WP4 update

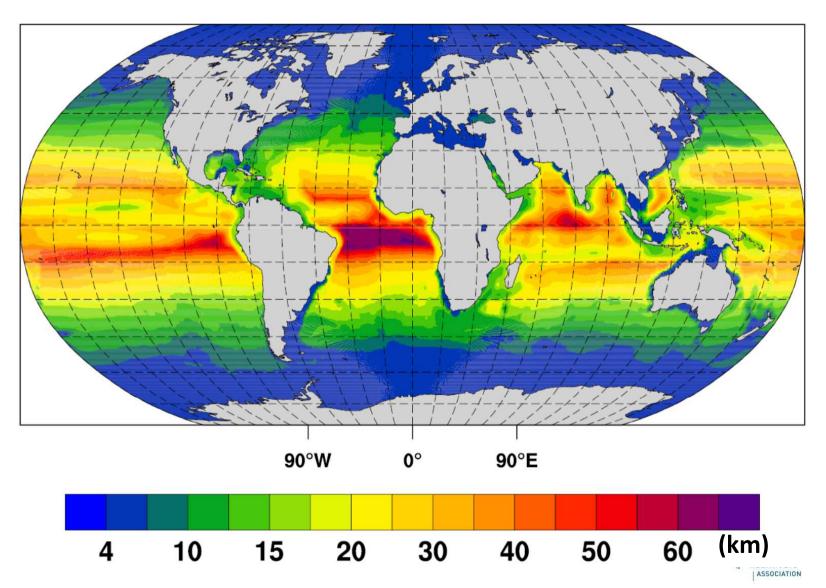
Malcolm Roberts

Jin-Song von Storch

Thanks to: Tido Semmler, Kristian Strommen, Malcolm Roberts/Paul Field, Katja Lohmann, Dela Spickermann, Irene Mavilia, Laurent Brodeau

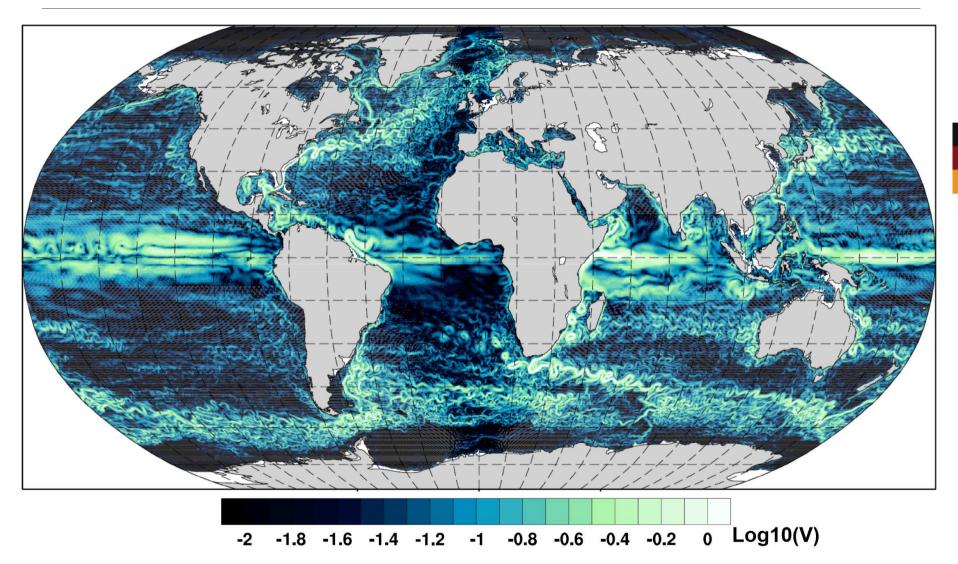
Contributions from: AWI Oxford University Met Office/Leeds MPI – M DKRZ CNR BSC

WP4 topics

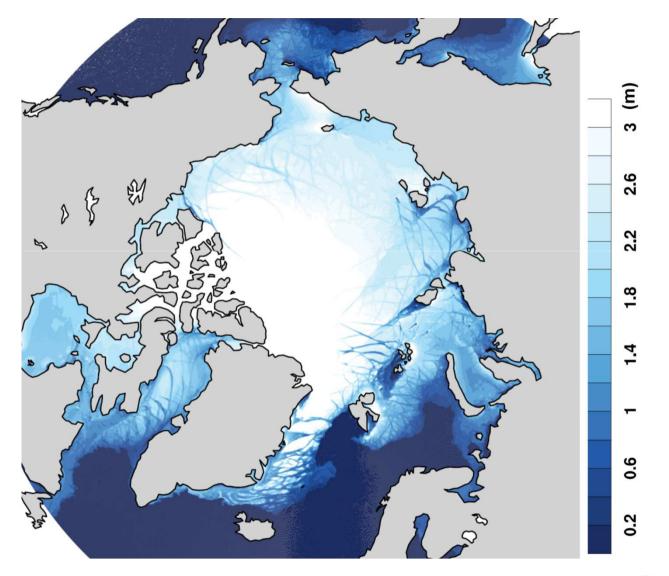

- Unstructured mesh modelling
- Stochastic physics
- Eddy-resolving ocean coupled modelling
- Next generation aerosol-microphysics
- What are the relative costs and benefits of different approaches?
- WP4 runs meant to be years 2-3, to offset from WP6

AWI-CM Frontier mesh (5 000 000 surface nodes)

Resolution = Max(Min(0.5*Rossby radius, Ocean variability), 4km).

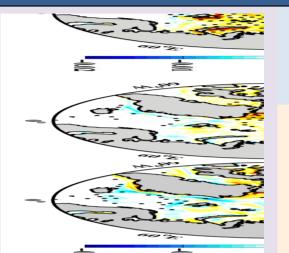

Mean: ca. 0.1 deg.

@M

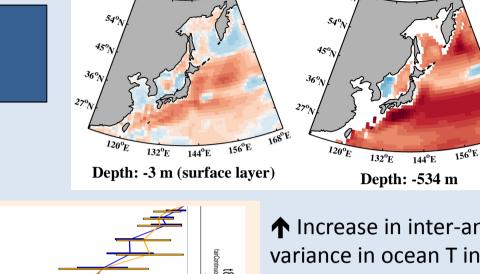

50m ocean velocity snapshot. Frontier mesh

Sea Ice thickness January snapshot. Frontier mesh.

Oxford University WP4 Status


Goal: develop a fully stochastic earth-system model in EC-Earth 3.2

- Land surface: stochastic perturbation of uncertain soil parameters
- NEMO: stochastic eddy and turbulent vertical mixing
- Sea ice: stochastic perturbation of sea ice strength parameter
- Atmosphere: SPPT, 'independent SPPT', SKEBS


Oxford: H.M.Christensen, D.MacLeod, S. Juricke, K. Strommen, A. Dawson, T. N. Palmer

In collaboration with ISAC CNR: S. Corti, J. von Hardenberg, C. Yang et al.

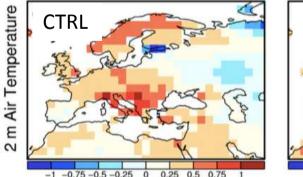
Known Impacts of new schemes

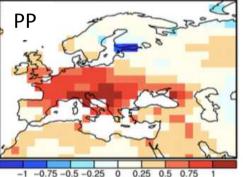
↑ Increase in ensemble spread sea ice thickness (Juricke et al, 2014)

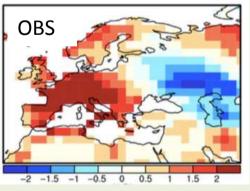
ယ t850hPa, Tropics tinuousRankedProbabilityScore [sign p-2013120100-2014111800 (23) CRPS T850 iSPPT (2 patt) 12 iSPPT (6 patt) 5

↑ Increase in inter-annual variance in ocean T in Kuroshio (Juricke et al, 2016)

0.6 0.307


0.129 0.038


0.004


-0.004 -0.038 -0.129 -0.307

-0.6

← iSPPT improves CRPS tropical MW forecasts (Christensen et al, in prep)

Perturbing land surface parameters improves simulation of 2003 European heatwave (MacLeod et al, 2016)

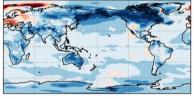
Recent results and tests

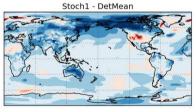
Reduction in northern hemisphere • temperature bias in EC-Earth 3.1 (SPHINX runs)

TAS djf means (1979-2010)

ERAInterim

DetMean - ERAInterim

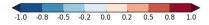

-7 -10


-0.8 -0.5 -0.2 0.0

-3

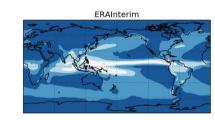
-1.0

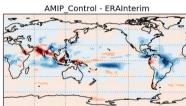
250 260 270 280 290 300 310 Stoch0 - DetMean

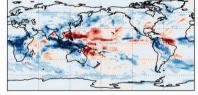

1

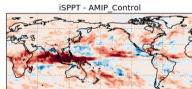
0.2 0.5 0.8 10

-0.5 -0.2 0.0 0.2 0.5 0.8 1.0 Stoch2 - DetMean



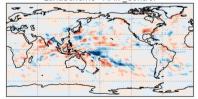



First testing of climate with new • stochastic schemes in FC-Farth 3.2 (10yr runs).


prec means (1990-2000)

5.0 7.5 10.0 12.5 15.0 17 5 25 SPPT - AMIP_Control

0.0


12

-1.2


-74

LandScheme - AMIP Control

-0.8 -0.4 0.0 0.4 0.8

Current status

- ✓ All three stochastic schemes implemented in EC-Earth 3.2
- Initial testing has been done: schemes are stable (no blow-up within 10 years) and do not dramatically alter energy balances, though some tuning is still needed

Next goals

- Tuning of the stochastic parametrisations
- Ensemble runs (AMIP style) for more robust testing. Eventually coupled testing.
- Problem: EC-Earth 3.2 is still not fully tuned for coupled runs, so proper testing and final tuning not possible until early 2017!

WP4 CNR C National Research Council of Italy

* We performed a set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to both model resolution and stochastic parameterization:

Truncation	Resolution	# members
T159L91 AMIP	125.2 km	10+10
T255L91 AMIP	78.3 km	10+10
T511L91 AMIP	39.1 km	6+6
T799L91 AMIP	25.0 km	3+3
T1279L91 AMIP	15.7 km]+]
T255L91 coupled	78.3 km	3+3

http://www.to.isac.cnr.it/sphinx

 <u>Atmospheric-only</u>: 5 horizontal resolutions (Present day 1979-2008, and Future Scenario 2039-2068 RCP8.5)

• <u>Coupled</u>: T255 1850-2100: historical + RCP8.5

Reference

Paolo Davini, Jost von Hardenberg, Susanna Corti, Hannah M. Christensen, Stephan Juricke, Aneesh Subramanian, Peter A.G. Watson, Antje Weisheimer, and Tim N. Palmer (2106) : *Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in climate simulations* – GMD Under review

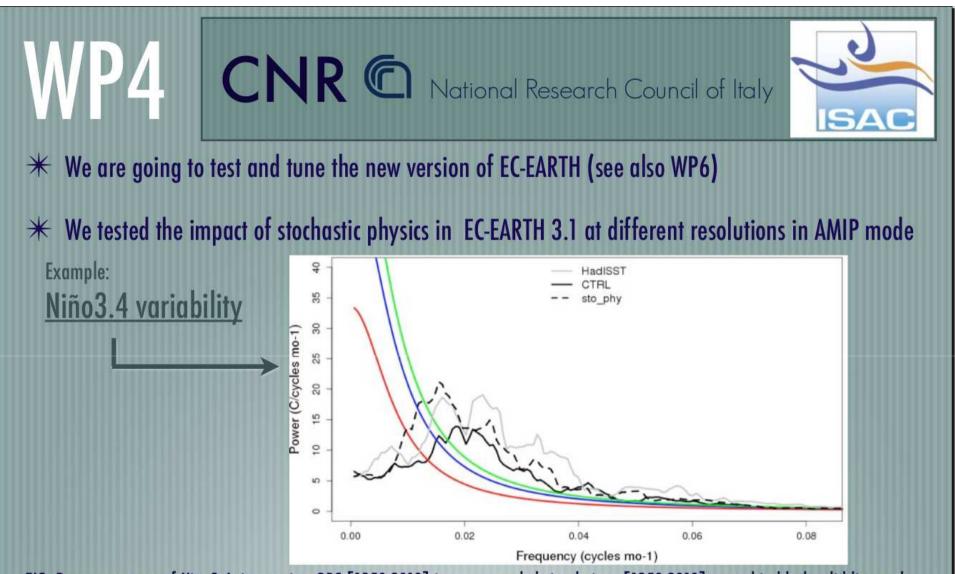
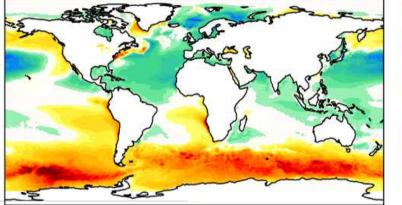


FIG: Power spectrum of Niño3.4 time series: OBS [1850-2010] in gray, coupled simulations [1850-2010] control in black solid line and with stochastic physics in the atmospheric component in black dashed line. For the EC-EARTH simulations the power spectrum has been computed averaging the spectra of the three ensemble members. Also shown are the best fit AR(1) spectrum (red) and its 95% and 99% confidence bounds (blue and green curves respectively). Top axis indicates period in years, while bottom axis indicates the frequency in cycles per month.

Met Office

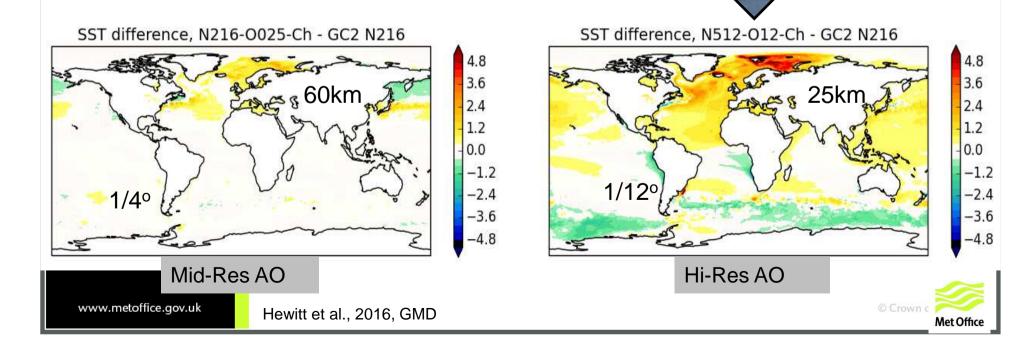
- Coupled 25km UM 1/12 NEMO-CICE ocean coupled model running (4.5 years)
 - Present day test run, not yet HighResMIP (HadGEM3 GC3.1) configuration
 - Technical optimisation ongoing, including: XIOS-2, memory
 - Also tests with ocean-sea-ice configuration
 - Over next year, will look at improving efficiency with sea-ice (a limiting factor on speed) via OASIS coupling.
- Global 10km model being set up
 - Use science consistent with GC3.1, but probably with prognostic aerosol to compare with new CASIM aerosol-microphysics package
- Stochastic physics
 - Stochastic scheme as part of standard GC3.1 setup, so will simply run with this switched off
- Aerosol
 - (See 10min madness)
 - CASIM running at N2048 (~5km) aquaplanet for 5 day runs.
 - Experiments carried out to explore the effect of a 100/cc->2000/cc perturbation in ccn for a northern hemisphere channel (30-60N) and an equatorial channel (15S-15N).
 - Comparable experiments carried out with low resolution N96 version of aquaplanet with CASIM but with parametrized convection on. However, parametrized convection is not sensitive to aerosol.
- Work done by:
 - Dan Copsey, Livia Thorpe, Pierre Mathiot, Helene Hewitt, Miroslaw Andrejczuk, Paul Field, (MO)
 - Daniel McCoy (Leeds)

Results


- Using previous model configuration, completed 20 year 25km – 1/12° simulation (compared to 60km – ¼°)
 - Papers Hewitt et al (2016) GMD; Roberts et al (2016) GRL.
 - Main results
 - Aspects of mean state improved:
 - AMOC, dense overflows, northward heat transport
 - Southern Ocean SST warm bias, cold NH SST bias
 - Air-sea interaction slightly improved $\frac{1}{12}$ to $\frac{1}{12}$ degree
 - » 1/12 much better than 1 degree

HadGEM3 GC2 configuration, impact of eddy-resolving ocean

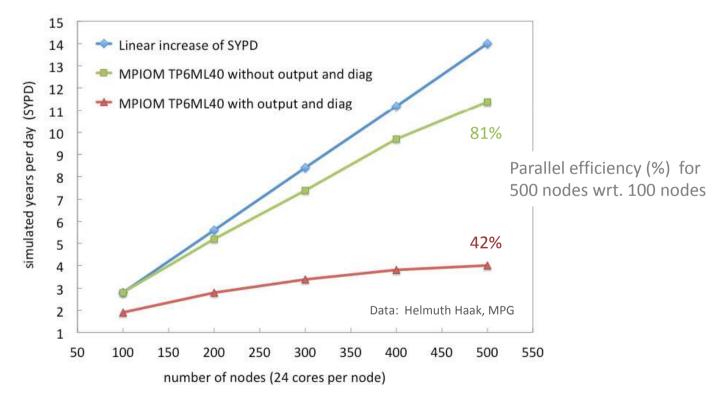
SST bias in N216 GC2, and relative change, over years 11-20 N216 = 60km, N512 = 25km atmosphere; O025 = 1/4°, O12 = 1/12° ocean


SST bias N216 GC2 years 11-20, angjn

4.8 3.6 2.4 1.2 0.0 -1.2-2.4-3.6 -4.8

Impact of increasing the ocean model resolution from ¹/₄ degree to 1/12 degree:

Significant warming in the North Atlantic due to increased overturning and heat transport


WP4: Frontier simulations at MPI-M

- Frontier configuration: T255/TP6M (~ 50 km in atmosphere, ~ 10 km in ocean)
- Problem: Substantial weakening of MOC, in contrast to T63/TP6M and similarly to T255/TP04 (WP6 high-resolution configuration)
- We believe, MOC decrease in frontier configuration is caused by too weak winds in T255 atmosphere component (as shown for WP6 high-resolution configuration by Dian Putrasahan on Tuesday)
- Future plan: Port tuning experience from WP6 high-resolution configuration (once successful) to WP4 frontier configuration
- Frontier simulation (tests) mainly in 2018 given WP6/WP5 simulation load in 2017

- DKRZ team: Jörg Behrens, Irina Fast, Dela Spickermann, Joachim Biercamp (PI)
- **Current activities within WP4:** Optimisation of computational performance of MPIOM
- Motivation: Throughput and scaling of eddy resolving ocean model MPIOM TP6ML40 (i.e. 1/10° with latitudinal refinement in SH, 40 vertical layers) is strongly limited by missing parallel output and online diagnostic calculations (MOC, global means etc).

⇒ Implementation of a parallel asynchronous output in MPIOM using CDI-PIO has been started at DKRZ.

Laurent Brodeau, laurent.brodeau@bsc.es

Setting up EC-Earth 3.2 at ultra-high resolution: [NEMO:ORCA12.L75-LIM3] / [OASIS-MCT] / [IFS:T1279.L137]

NEMO version 3.6 – LIM3 – XIOS2 IFS cycle 36r4

"saved" land processors domain

Daily sea-ice concentration, east of Greenland, LIM3/ORCA12, early April Are these realistically-looking cracks here for the good reason?

WP4 progress @ BSC

Laurent Brodeau, laurent.brodeau@bsc.es

Recently:

IFS:T1279.L137 successfully run 1 year (E. Tourigny)

NEMO: Obtaining stable and "realistic" ocean circulation with ORCA12.L75-LIM3 in ocean-only forced mode / year 1989 (hindcast) / careful namelist tuning

- Assessed horizontal processor decomposition / performance
- Cold start from T and S (WOA 2013)
- 10 initial days with dt = 60s
- Production with dt = 360s
- Forced with DFS5.2 (DRAKKAR Forcing Set)
- Surface salinity restoring
- Monolithic file output with XIOS2
 - \rightarrow restarts for year 1990

Now:

Coupling setup for OASIS, optimization of communication in namelist & preparation of configuration fields (grids, masks, weights, restarts, etc).

Soon:

Launch in coupled mode!