

European Commission

CRESCENDO

Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach

www.crescendoproject.eu

Coordinator: Colin Jones: University of Leeds/NCAS Project start : Nov 1st 2015, Duration : 5 years

Developing, using and evaluating Earth system models

CRESCENDO primary science objectives

- Improve the representation of key (terrestrial & marine) biogeochemical & aerosol processes in seven European ESMs
- Develop process-level methods/diagnostics to evaluate the process improvements
- Further develop a community ESM evaluation tool (ESMValTool) and develop and apply methods to evaluate the performance of the ESMs
- Through development of suitable emergent constraints reduce uncertainty in future Earth system feedbacks and target areas for future model improvement
- Coordinate a European contribution to key CMIP6 MIPs: C4MIP, AerChemMIP, OMIP, LUMIP, LS3MIP and ScenarioMIP
- Develop new emission & land-use (SSP/RCP) scenarios for CMIP6 ScenarioMIP

25 CRESCENDO partners from 10 countries 7 Earth System Models and 3 Integrated Assessment Models

ESMs in CRESCENDO

Probable "higher" and "lower" resolution CRESCENDO ESM versions

	"Higher" resolution models		"Lower" resolution models	
Model	Atmosphere	Ocean	Atmosphere	Ocean
CNRM-ESM	T359	0.25°	T127	1°
CMCC-ESM	1°	0.25°	1°	1°
EC-Earth	T255	1°	T159	1°
IPSL-ESM	1.3° x 0.65°	0.25 [°]	2.5° x 1.25°	1°
MPI-ESM	T127	0.4°	T63	1.5°
NorESM	0.9° x 1.25°	0.25°	1.9° x 2.5°	2°
UKESM	0.6°	0.25°	1.5°	1°

WP1: Improving terrestrial models: carbon-nitrogen interactions

JSBACH (MPI-ESM), 1%-CO₂ offline run with (CN) & without (C) N limitation: Terrestrial carbon uptake decreases by 90 Gt C (13%) due to N limitation

ORCHIDEE (IPSL), historical offline run: Ncycle leads to GPP reduction, optimization of CN interactions still ongoing

Gross Primary Produc (LANDS) (PgC/yr) (@SBX:12)

CRESCENDO ESMs plan to use interactive CN land models in CMIP6, final calibration of coupled carbon-nitrogen models

WP2 : Improved representation of marine biogeochemistry

Model: NFMO-MFDUSA Resolution : $1^{\circ} \rightarrow 1/12^{\circ}$ Period: 1990-2015 Partner : NOC, UK

Ocean Biogeochemistry

Introduction of a Reactive Continuum Model for Marine Particles

WP3: Improving aerosol-chemistry schemes in ESMs

Improved representation of natural (pre-industrial) aerosols

- Pre-industrial (PI) to present day (PD) aerosol radiative forcing is sensitive to the simulated PI baseline (mostly natural) aerosol state (Carslaw et al., Nature, 2013)
- Two recent developments significantly affect natural aerosol concentrations, and through this the PI to PD historical radiative forcing.

Aerosol concentration

WP3: Natural aerosols: "Pure biogenic" aerosol/droplet nucleation

CERN CLOUD chamber:

Fast aerosol nucleation from oxidised a-pinene (not H_2SO_4) can explain large nucleation rate in "clean" atmosphere

Percent change in CCN from inclusion of new biogenic nucleation for PI and PD state

Historical (PI to PD) aerosol forcing reduced by 15-30% due to larger impact of biogenic nucleation on pre-industrial CCN: Test in UKESM1

Gordon et al., PNAS, 2016 in press

Kirkby et al., Nature, 2016

WP3: Fire emissions and impact on pre-industrial aerosols

- Fire emissions are typically scaled with population.
- New fire models account for more realistic changes in Land Use and Land Cover etc.
- Higher fire emissions in the pre-industrial potentially have a substantial impact on aerosols and historical aerosol forcing

Percent change in PI CCN due to inclusion of updated fire models vs standard Aercom models

BLAZE/Aerocom

In the GLOMAP aerosol model, the effect is to reduce PI to PD aerosol forcing by 40 to 88%

LMFire/Aerocom in the PI

Hamilton, et al., submitted 2016

WP7: Towards routine benchmarking of ESMs

- Further development of the ESMValTool (Eyring et al., GMD, 2016) for routine evaluation of ESMs in CMIP6 and at individual modelling centers
- Implementation of new diagnostics (e.g. IPCC chapter 9 & 12, biogeochemical and aerosol process metrics and emergent constraints) in ESMValTool
- Coupling to the Earth System Grid Federation (ESGF) at selected supernodes so the tool can be run directly on CMIP6 model output
- Further technical development of the ESMValTool, including
 - Development of a new backend using Iris (towards a merge of ESMValTool and Auto-Assess)

-5.25 -4.5 -3.75 -3 -2.25 -1.5 -0.75 0 0.75 1.5 2.25 3 3.75 0.50 0.40

0.30 0.20

0.10 -0.00

-0.10

-0.20 -0.30

-0.40

-0.50

WP10: Timing of SSP/RCP scenarios

- IAM scenarios : complete except RCP1.9 W/m2 (1.5°C warming)
- Land use & emission harmonisation / downscaling → aimed at
 December, 31 2016
- Further translation of emission data into consistent GHG concentration files (and maps) → March, 2017.
- Last review \rightarrow May, 2017

European Commission

Thank you!

Network of Schools for Earth System Modelling & Climate Change

Overall aim to help define and develop a suit of **education resources** on the science of climate change and climate modelling, while allowing students to learn **new skills**, benefit from the **experience** and have **fun**.

- > Partnering some of our research institutes with a nearby school (~16-18 yr old science students);
- > Work with students to "co-develop" informative materials on climate change, climate models etc;
- Along the way students gain: increased knowledge of the subject, transferable skills and develop material for the wider community;
- Aim to invite some of the students (from the 3 schools) to our GA in 2017 to present some of the things they have been working on to the wider project and meet each other.

Who's involved?

In this first year, one school in Sweden (SMHI), France (IPSL), and UK (NCAS, MOHC & UEXE)

Earth System Models in CRESCENDO

CNRM-ESM : Meteo-France CMCC-ESM : CMCC EC-Earth : ENEA, FMI, CNR, KNMI, SMHI, ULUND IPSL-ESM : CNRS-IPSL MPI-ESM : MPI-M, MPI-BGC NorESM : UiB, met.no UKESM1 : Met Office, NOC, UNEXE, ULEEDS, UREAD, UEA

CRESCENDO work packages

WP1: Improving terrestrial biogeochemical processes

WP2: Improving marine biogeochemical processes

WP3: Improving natural aerosol and trace gases in ESMs

WP4: Evaluating terrestrial processes in ESMs

WP5: Evaluating marine processes in ESMs

WP6: Evaluating natural aerosol and trace gases in ESMs

WP7: Benchmarking and evaluation of ESMs

WP8: Understanding and constraining model projections

WP9: Quantify aerosol/biogeochemical forcing and feedbacks

WP10: IAM scenarios for ESM projections: ScenarioMIP

WP11: Traceability of ESM performance and projection response to ESM resolution

WP12:ESM simulations for ScenarioMIP

WP13: CRESCENDO data dissemination

WP14: CRESCENDO knowledge dissemination

WP1: Improving terrestrial biogeochemical models

WCRP recently developed a new Grand Challenge on carbon-climate feedbacks <u>https://www.wcrp-climate.org/grand-challenges/gc-carbon-feedbacks</u>

Key questions are:

What drives carbon sinks? How might climate feedbacks amplify climate change? How will vulnerable carbon stores respond to climate?

A priority is better constraining the response of the carbon cycle to increasing CO_2 CO_2 fertilisation (increased photsynthesis as CO2 increases) is the largest uncertainty in carbon cycle feedbacks

Nitrogen availability limits the amount of future CO2 fertilisation increases Inclusion of a N cycle may dramatically change future terrestrial C-uptake

WP5: Evaluating marine processes in ESMs

- \Rightarrow Develop process-based metrics to evaluate marine component of ESMs
- ⇒ Develop standard metrics to evaluate improved/new processes in marine component of ESM

Mean-state/variability

Impact of model drift in skill-score metrics (Séférian et al., 2016)

Higher resolution & regional focus

Coastal CO₂ fluxes (Bourgeois et al., 2016)

Model-Data Scatter plot for Coastal CO_2 fluxes

New processes & new database

Evaluation of N₂O fluxes (Buitenhuis et al., in prep)

Simulated N₂O with NEMO-Planktom5

WP8: Emergent Constraints

Evaluating future climate change feedbacks using observed variability

Using Earth System Models to identify systematic relationships between observable contemporary climate variations and aspects of future climate (change) sensitivity

Enable multi-model ensembles to be

more than the sum of the parts.

WP7: Envisaged Workflow for Model Evaluation in CMIP6

- We argue the community has reached a critical point at which many baseline aspects of ESM evaluation need to be performed more efficiently
- The resulting, increasingly systematic characterization of models will, compared with earlier CMIPs, more quickly and openly identify strengths & weaknesses of the simulations
- This activity also aims to assist modelling groups in improving their models
- ESMValTool running alongside the ESGF, as soon as the output is published

Well-Established Analysis Sharing of Diagnostic Code Guidance and support from CMIP Panel, WGNE/WGCM Climate Model Metrics Panel and , CMIP6-Endorsed MIPs

Eyring et al., ESD (2016)

Model Output

WP8: Emergent Constraints on CO₂ Fertilization from trends in CO₂ amplitude (Wenzel et al., *Nature*, 2016)

WP10: Developing SSP/RCP IAM scenarios for CMIP6 ScenarioMIP

CO2 Emissions

Land use

Work on SSP scenarios now complete and documented in Special Issue Global Environmental Change (16 papers; published November 2016)

Based on Riahi et al., 2016

Next activity IAM \rightarrow ESMs

Variable	Subcategories	Resolution	Sources
Land use	Crop, pasture, urban area, veg- etation, forest (latter two both primary and secondary).	Spatial maps indicating land use and transition matrices	Methods for historical data and scenarios developed by LUMIP
Emissions of long-lived greenhouse gases	CO_2 , N_2O , halogenated gases	Spatial maps and/or emissions by region.	Historical data described in Meinshausen et al. (2016)
Concentrations of long- lived greenhouse gases	CO ₂ , N ₂ O, halogenated gases	Time series	
Emissions of air pollu- tants	CH_{4} , SO_2 , NO_x , VOC , CO , NH_y , BC, OC	Spatial maps	Historical data described to be provided by the Com- munity Emissions Data Sys- tem (CEDS) project (http: //www.globalchange.umd.edu/ ceds/ceds-cmip6-data/)
Short-lived forcing	Ozone, optical depth	Spatial maps	

