# Tropical-Extratropical teleconnections in ensemble EC-Earth simulations

#### Susanna Corti, Irene Mavilia<sup>1</sup>, Paolo Davini<sup>2,1</sup>, Jost von Hardenberg<sup>1</sup> and Chunxue Yang<sup>1</sup>

<sup>1</sup>Istituto di Scienze dell'Atmosfera e del Clima, Coniglio Nazionale delle Ricerche, Bologna, Torino, Italy <sup>2</sup>Laboratoire de Météorologie Dynamique, École Normale Supérieure, Paris

> EC-Earth Meeting 2 -3 November2016 Reading



## Outline

- Sensitivity of Euro-Atlantic weather regimes to the Atlantic Multidecadal Variability (AMV) phases.
- Teleconnection between El Niño and PNA in DJF

## Questions

- How well are weather regimes and teleconnection patterns "reproduced" in EC-Earth?
- What is the degree of "reproducibility" of these teleconnection patterns in a set of climatological sister simulations?
- What are the factors that might weaken or strengthen a teleconnection pattern (or the regime sensitivity to "decadal oscillations")?

## **Teleconnections:** The "Old Queen" : **El Niño-PNA (or PNA-like)**



# **AMV(or AMO)**

Environ. Res. Lett. 9 (2014) 034018

Y Peings and G Magnusdottir



**Figure 1.** AMO signature in the observations. (a) Winter (DJFM) AMO time series from the HadISST dataset (red). Seasonal anomalies are shown in black. (b) SST (contours in K, positive contours in red, negative contours in blue) and SIC anomalies (shading in %) associated with the AMO signal in observations over 1951–2012 (difference between positive and negative phases of the AMO, based on composite analysis to select positive and negative AMO years). The domain on which the AMO anomalies are imposed in the model is also shown.

AMV index: yearly anomalies of the North Atlantic SSTs between 75° W–5° W and 0° –70° N minus 10-year running mean of the global SSTs (area-averaged between 60° S and 60° N) (Trenberth and Shea 2006).

# AMO(or AMV) & The Euro-Atlantic Flow Regimes Frequencies

Environ. Res. Lett. 9 (2014) 034018

Y Peings and G Magnusdottir



**Figure 3.** Response of the North Atlantic intraseasonal weather regimes to the AMO. (a)–(d) Winter (DJFM) North Atlantic weather regimes computed over 1901–2010 from the Z500 anomalies (in m) of 20CR. Frequencies of occurrence over the 1901–2010 wintertime days are indicated in %. (e)–(h) Distribution of seasonal regime frequencies in 20CR over 1901–2010, during AMO– (53 years, white boxplots) and AMO+ (57 years, gray boxplots) for winter (DJFM), early (DJ) and late (FM) winter. (i)–(l) same as (e)–(h) except for CAM5 (AMOn in white and AMOp in gray, 50 years for each experiment). Boxplots indicate the maximum, upper-quartile, median, lower-quartile and minimum of the distribution (horizontal bars). The mean of the distribution is shown by red diamonds, and asterisks indicate the significance level of the difference of the mean between AMO– and AMO+ (AMOn and AMOp for the simulations): \*: p < 0.1; \*\*: p < 0.05 (*t*-test).

# AMO(or AMV) & The Euro-Atlantic Blocking







UNIVERSITY OF

Consiglio Nazionale delle



#### Atmospheric-only: 5 horizontal resolutions

OXFORD Coupled: T255L91 1850-2100, historical + RCP8.5



Future Scenario 2039-2068 RCP85



#### **EC-Earth version 3.1**

Website and data access: (http://sansone.to.isac.cnr.it/sphinx T159I 91 (125km): 10+10 ensemble members T255L91 (80km): 10-10 T511L91 (40km): 6+6 T799L91 (25km): 3+3 T1279L91 (16km): 1+1

#### Euro-Atlantic Weather regimes AMIP T255 [10 ensemble members] EC-Earth NCEP







#### Atlantic Multidecadal Variability (AMV) AMV- (1979-1995) AMV+ (1996-2008)



# Sensitivity of Euro-Atlantic Weather Regimes Frequency to AMV (NCEP)

AMV- and AMV+ period frequency anomalies from NCEP/NCAR reanalysis (1979-2008)



#### Sensitivity of Euro-Atlantic Weather regimes Frequency to AMV (EC-Earth-AMIP)

AMV- and AMV+ period frequency anomalies, T255 base (1979-2008)



Figure 2: Regime frequencies anomalies with respect to the entire period (1979-2008) shown in solid line; during AMV- (1979-1995) in circles and during AMV- (1996-2008) in triangles.

### Sensitivity of Euro-Atlantic Weather regimes Frequency to AMV (EC-Earth-AMIP)



# Sensitive and Insensitive ensemble members

What are the factors that might amplify (or inhibit) the regime sensitivity to AMV in an "AMIP-world"? Possible candidates: Eurasian Snow anomalies and/or Stratospheric Warming events in (or not in) phase with the AMV

Positive anomaly of Eurasian Snow Depth in Autumn/Winter  $\rightarrow$  NAO-Stratospheric Warming events  $\rightarrow$  NAO-

**Strategy:** Split the ensemble in 5 good (i.e. most AMV sensitive) and 5 bad (i.e. least AMV sensitive) ensemble members and look at the differences in snow depth and T50hPa climatology for AMV+ and AMV- years.





# Pacific-North America Weather regimes NCEP



#### Pacific-North America Weather regimes AMIP T255 [10 ensemble members]

#### **EC-Earth**







**NCEP** 

#### Pacific Trough Frequency & Global SST T255 DJF

#### CORRELATION MAP: Pacific trough regime frequency and global SST (Pacific North American region, T255, base)



## Possible influence of the stratosphere



Figure 5 | Modelled surface climate response to El Niño associated with a weak and strong polar vortex, a,b, Composite sea-level pressure anomaly (hPa) for El Niño years with sudden stratospheric warmings (a) and El Niño years with no sudden stratospheric warmings (b). Anomalies are for January-March as in Fig. 1. Grey and white contours indicate significance at the 95% and 99% confidence levels.

Ineson and Scaife 2009 Nature GeoScience



Richter et al. 2015 ERL

## Temperature at 50hPa [40-80N] GOOD minus BAD NIÑO WINTERS

T50 [40-80N] Winter Nino years [83 87 92 95 98 03] Blue: GOOD minus BAD ems ; Red: EM9 minus EM0



## Nino3.4 Teleconnection in ens9 and ens0



## **Concluding** remarks

- Euro-Atlantic and Pacific-American Regime patterns are well simulated.
- As in Peings and Magnusdottir [2014] and Davini et al. [2015], the observations show an increased blocking and NAO- frequency during AMV+ period and a decreased NAO+ frequency during AMV-: there is an opposite sign relationship between the polarities of the AMV and the NAO.
- In AMIP simulations, the sensitivity to the AMV phase changes largely according to the ensemble member. The most sensitive ensemble members are those with positive anomalies in Eurasian Snow Depth and Temperature in the Stratosphere in DJF when the AMV is in a positive phase.
- The DJF PNA-Niño teleconnection exhibits a non-negligible inter-ensemble variability as well.
- The stratosphere might play a role in amplifying or inhibiting the teleconnection. During El Niño winters the best ensemble member has a colder stratosphere than the worst. However the signal is only partially coherent among ensemble members and winters and further investigation is needed to drive conclusions.