WP9

John Seddon David Hein-Griggs

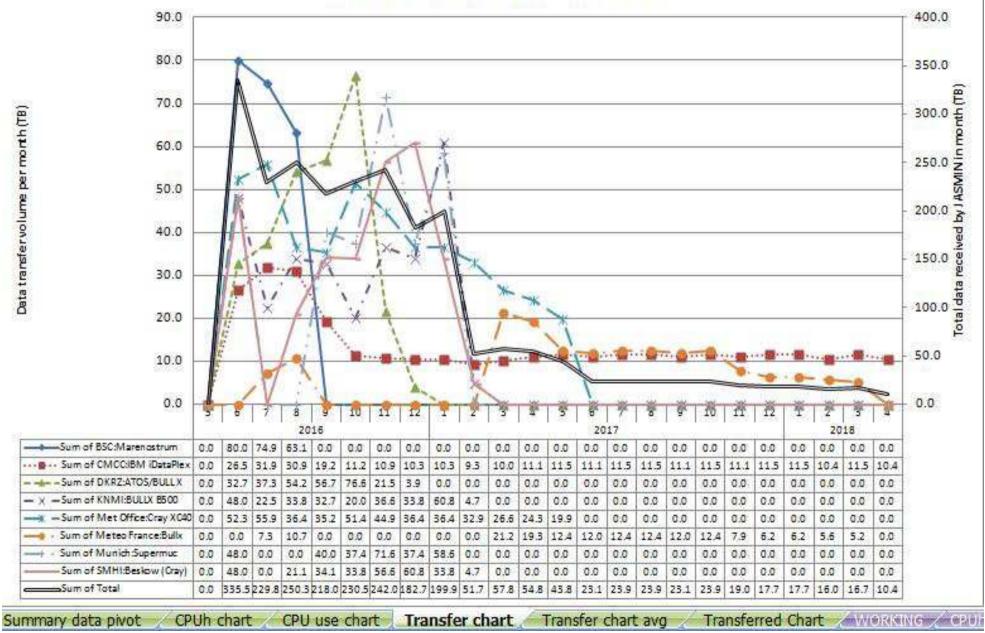
Technical issues

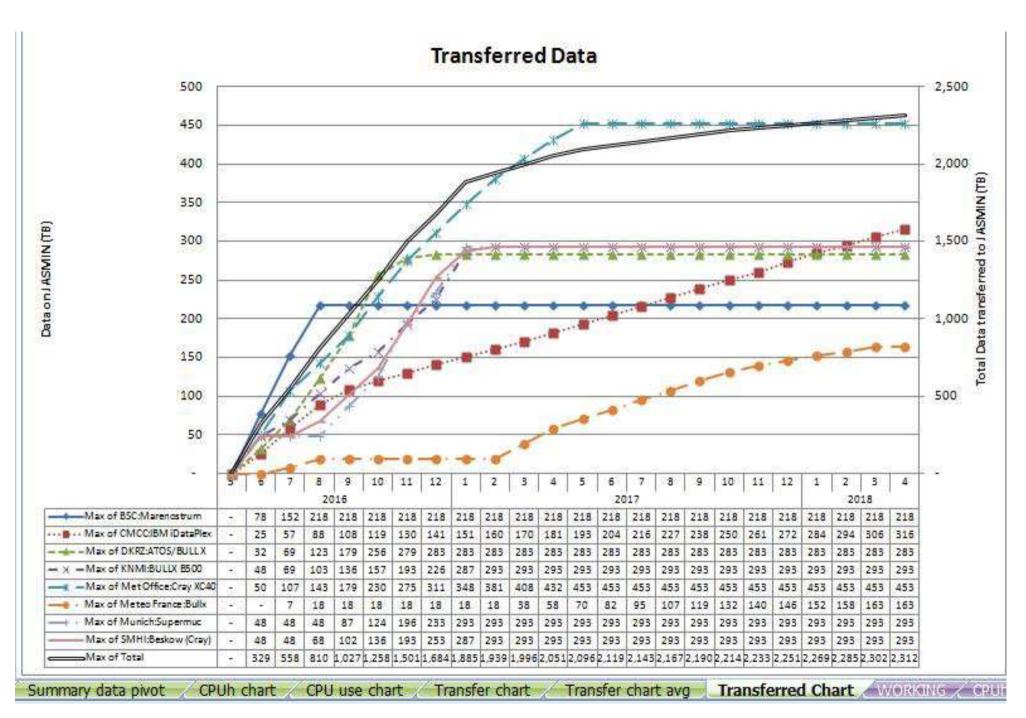
- The facilities to store the data on Jasmin (480TB of disk, 2.5PB of tape) are ready
- Software tools to write to tape and extract from tape are almost ready – Jon to complete
- Jasmin's bandwidth is comfortably sufficient for several groups to be uploading volumes of data concurrently
- The greater cause of concern is that the 480TB (100TB of which is already used, hopefully to be cleared) will cause a bottleneck, because the disk space needs to act as a staging area for data arriving to Jasmin (and heading for tape) and data extracted for post processing
- Jon and I will have to monitor the disk closely, which could include
 - Implementing an upload queue
 - Strict controls of extracted data for postprocessing which is left untouched – automatically deletion may have to apply

Technical issues

- "Pre" Primavera data on Jasmin needs to be cleared, and any other data unless there's very good reason
- Data volume of WP5 was expected to be 15-20TB (monthly means only). If more is expected, there will need to be a negotiation.
- WP10/WP11 have provided an updated (final?) data request that needs to be reviewed and distributed

Timescales


- The main task is for the groups to keep WP9 informed:
 - Experiment start date(s)
 - Run rate (if different from earlier estimates)
 - Data volumes (if different from earlier estimates)
 - Any problems which affect the completion date of the experiments and upload of the data to Jasmin


a used to analyse HPC usage, data generation	n and data tr	ansfer	L.		0			2	IV.
	Centre		Model	Num cores 🔽	Throughput 💌	Queueing 🔽	Data per model year (TB) 😿	Start date 💽	N years
1 MS22_HPC_plan_cmcc.xlsx	CMCC	Historical AMIP HIGH	CMCC-CM2-VHR	912	1.5	1.5	1.087	01/06/2016	
2 MS22_HPC_plan_cmcc.xlsx	CMCC	Future AMIP HIGH	CMCC-CM2-VHR	912	1.5	1,5	1	06/08/2016	
3 MS22_HPC_plan_cmcc.xlsx	CMCC	Coupled control HIGH	CMCC-CM2-VHR	912	1.5	1.5	1.11488	13/09/2016	
4 MS22_HPC_plan_cmcc.xlsx	CMCC	Coupled transient HIGH	CMCC-CM2-VHR	912	1.5	1.5	1.11488	23/01/2017	
5 MS22_HPC_plan_cmcc.xlsx	CMCC	Historical AMIP LOW	CMCC-CM2-HR	912	6	1.5	0.1	01/06/2016	
6 MS22_HPC_plan_cmcc.xlsx	CMCC	Future AMIP LOW	CMCC-CM2-HR	912	6	1,5	0.23	18/06/2016	
7 MS22_HPC_plan_cmcc.xlsx	CMCC	Coupled control LOW	CMCC-CM2-HR	500	4	1.5	0.25	28/06/2016	
8 MS22_HPC_plan_cmcc.xlsx	CMCC	Coupled transient LOW	CMCC-CM2-HR	500	4	1,5	0.25	06/08/2016	
9 MS22_HPC_plan_CNR_EC_Earth.xlsx	CNRM	Historical AMIP HIGH	EC-Earth	800	3.5	1.1	0.7	01/06/2016	
10 MS22_HPC_plan_CNR_EC_Earth.xlsx	CNRM	Future AMIP HIGH	EC-Earth	800	3.5	1.1	0.7	01/01/2017	
11 MS22_HPC_plan_CNR_EC_Earth.xlsx	CNRM	Coupled control HIGH	EC-Earth	1864	1.66	1.1	0.8	01/09/2016	
12 MS22_HPC_plan_CNR_EC_Earth.xlsx	CNRM	Coupled transient HIGH	EC-Earth	1864	1.66	1.1	0.8	01/11/2016	
13 MS22_HPC_plan_CNR_EC_Earth.xlsx	CNRM	Historical AMIP LOW	EC-Earth	528	18	1.2	0.05	01/06/2016	
14 MS22_HPC_plan_CNR_EC_Earth.xlsx	CNRM	Future AMIP LOW	EC-Earth	528	18	1.1	0.05	01/01/2017	
15 MS22_HPC_plan_CNR_EC_Earth.xlsx	CNRM	Coupled control LOW	EC-Earth	574	17	1.1	0.05	01/09/2016	
16 MS22_HPC_plan_CNR_EC_Earth.xlsx	CNRM	Coupled transient LOW	EC-Earth	574	17	1.1	0.05	01/11/2016	
17 MS22_HPC_plan_KNMI_EC_Earth.xlsx	KNMI	Historical AMIP HIGH	EC-Earth	1800	3	1.1	0.7	01/06/2016	
18 MS22_HPC_plan_KNMI_EC_Earth.xlsx	KNMI	Future AMIP HIGH	EC-Earth	1800	3	1.1	0.7	15/01/2017	
19 MS22_HPC_plan_KNMI_EC_Earth.xlsx	KNMI	Coupled control HIGH	EC-Earth	1800	1.5	1.1	0.8	15/07/2016	
20 MS22_HPC_plan_KNMI_EC_Earth.xlsx	KNMI	Coupled transient HIGH	EC-Earth	1800	1.5	1.1	0.8	01/11/2016	
21 MS22_HPC_plan_KNMI_EC_Earth.xlsx	KNMI	Historical AMIP LOW	EC-Earth	1800	10	1.2	0.05	01/06/2016	
22 MS22_HPC_plan_KNMI_EC_Earth.xlsx	KNMI	Future AMIP LOW	EC-Earth	1800	10	1.1	0.05	15/01/2017	
23 MS22_HPC_plan_KNMI_EC_Earth.xlsx	KNMI	Coupled control LOW	EC-Earth	1800	10	1.1	0.05	15/07/2016	
Run data Summary data Summary data	ata pivot 🏑	CPUh chart 📈 CPU use char	t / Transfer chart /	Transfer chart a	vg / Transferre	ed Chart)RKING 🖌 CPUh data 🏑 Tr <mark>il (</mark>		

Monthly data transfer totals (TB)

Deliverables and Milestones over the next year

D9.4

Description:

Publication of PRIMAVERA Stream1 data set Lead:

METOFFICE

Dissemination level:

PU

Type:

R

