Causes of AMOC slowdown in highresolution MPI-ESM

Dian Putrasahan; Jin-Song von Storch; Johann Jungclaus; Katja Lohmann; Helmuth Haak; Daniela Matei; Oliver Gutjahr

> PRIMAVERA 2nd GA Meeting Nov. 29th, 2016

Max-Planck-Institut für Meteorologie

Challenge: Unstable / Iow AMOC in high resolution MPI-ESM

Possible reasons for AMOC slowdown:

- Dynamical effect from weakening of surface winds
- Increased freshwater flux (less evaporation)
- Increased heat flux (less latent heat loss from presence of sea ice)

Challenge: High computational cost for running eddypermitting/resolving GCMs

Strategy: Use flux-adjusted HR (T127/TP04) runs to mimic XR (T255/TP04) runs

HR_orig = meanHR + variabilityHR

Flux adjustment = meanXR – meanHR @ every coupling time step HR_XRadjust = HR_orig + flux adjustment = meanXR + variabilityHR

Expt. name	Flux adjusted to XR
XR_orig (T255/TP04)	Control run at high resolution (pre-industrial)
HR_orig (T127/TP04)	Control run at low resolution (pre-industrial)
HR_XRalladjust	momentum, freshwater and heat fluxes
HR_XRbuoyancy	only freshwater and heat fluxes
HR_XRwinds	only wind stress over water
XR_1.5winds	High resolution with 1.5*(wind stress over water)

Effect on surface salinity

Effect on surface salinity

Impact on sea ice and deep convection:

