Earth System Modelling Activities at NCAR (Relevant to CRESCENDO[#] and PRIMAVERA*)

W.G. Large[†] National Center for Atmospheric Research (NCAR) Boulder Colorado

†CRESCENDO International Advisory Board

NCAR is sponsored by the National Science Foundation

Outline

- CESM : Developments for CESM2# & CESM2+#*
- CMIP6# :
- High Resolution*:
- Ensemble of Large Ensemble (uncertainty) ** :
- Climate Prediction* :
- Society#:
- DART (Data Assimilation, processes) **:

#CRESCENDO *PRIMAVERA

CESM Component Developments

- CESM2+ CESM2
- CAM -- CLUBB, MG2, MAM4 ; Strato, CSLAM, Subcol
- Ocean-- diurnal, aniso GM ; wave-driving, bgc
- CLM5 (next)
- CICE5 -- Salinity, Aerosols ; Drag, Snow
- CISM -- Greenland ; Antarctica
- CHEM -- 2nd Organic Aerosols
- SE -- CIME ; DART ; Pause-Resume

Development Goals for CLM5

Ecosystem Demography model – future biogeochemical core of CLM

Goal: Functional CLM5(ED) for use in studies of biome boundaries, trait filtering, etc Goal: CESM2 coupled runs with CLM(ED) within CMIP6 timeframe; will not be CESM2 default configuration

• Land cover and land use change

Goal: Global and transient crop capability with irrigation, fertilization, and cultivation of crops (land management) as default for historical and projection runs

Goal: More realistic land cover change impact on water and energy fluxes

Carbon cycle

Goal: Improved 20th century land carbon storage trend; improved comparison to field fertilization expts

Hydrology

Goal: Hydrology representation closer to state-of-art hydrology understanding Goal: Increasing utility for use in water resource and water-carbon interaction research

Land-atmosphere chemistry coupling

Goal: enhanced interactions, fire emissions, ozone damage to plants, CH₄ emissions

• Water and carbon isotopes

Courtesy of Dave Lawrence

CMIP6 and CESM2 targets (ocean at 1°):

- 1. physical climate (1°, low-top) (1x)
- + biogeochemistry (1°, CO₂ emission and/or concentration driven, low-top) (1.6x)
- 3. + atmospheric chemistry + biogeochemistry (1°, CO₂ emission driven, high-top) (8.5x)
- 4. physical climate (1/4° atm, low-top) (150x)

(scaling of computational cost relative to version #1)

CMIP 6: Historical , Deck & MIPs

MIP acronym	MIP name	Interest (H-M-L)	Name of primary sponsor(s)
AerChemMIP	Aerosols and Chemistry Model Intercomparison Project	Н	Lamarque/Emmons
C4MIP	Coupled Climate Carbon Cycle Model Intercomparison Project	Н	Lindsay
CFMIP	Cloud Feedback Model Intercomparison Project	Н	Medeiros/Kay (CU)/Klein (LLNL)
DAMIP	Detection and Attribution Model Intercomparison Project	Н	Tebaldi/Arblaster
DCPP	Decadal Climate Prediction Project	Н	Danabasoglu/Meehl
GeoMIP	Geoengineering Model Intercomparison Project	Н	Tilmes/Mills
GMMIP	Global Monsoons Model Intercomparison Project	М	Fasullo
ISMIP6	Ice Sheet Model Intercomparison Project for CMIP6	Н	Lipscomb/Otto-Bliesner
LS3MIP	Land Surface, Snow and Soil Moisture	Н	D. Lawrence
LUMIP	Land-Use Model Intercomparison Project	Н	D. Lawrence/P. Lawrence
OMIP/OCMIP	Ocean Model Intercomparison Project	Н	Danabasoglu/Lindsay
PMIP	Palaeoclimate Modelling Intercomparison Project	Н	Otto-Bliesner
RFMIP	Radiative Forcing Model Intercomparison Project	Н	Gettelman/Neale
ScenarioMIP	Scenario Model Intercomparison Project	Н	Meehl/O'Neill/P. Lawrence
SolarMIP	Solar Model Intercomparison Project	Н	Marsh
VolMIP	Volcanic Forcings Model Intercomparison Project	Н	Mills/Otto-Bliesner
Data only			
CORDEX	Coordinated Regional Climate Downscaling Experiment	Μ	Mearns/Gutowski
DynVar	Dynamics and Variability of the Stratosphere‶roposphere System	Н	Marsh
SIMIP	Sea-Ice Model Intercomparison Project	Н	Bailey/Holland/Jahn (CU)/Hunke (LLNL)
VIAAB	VIA Advisory Board for CMIP6	Н	Mearns/O'Neill
Not participating			
FAFMIP	Flux-Anomaly-Forced Model Intercomparison Project	М	
HighResMIP	High Resolution Model Intercomparison Project	М	Neale/Bacmeister
Cancelled			
ENSOMIP	ENSO Model Intercomparison Project	Н	Deser
PDRMIP	Precipitation Driver and Response Model Intercomparison Project	М	Lamarque
GDDEX	Global Dynamical Downscaling Experiment		

High-resolution CESM simulation run on Yellowstone. This featured CAM-5 spectral element at roughly 0.25 deg grid spacing, and POP2 on a nominal 0.1 deg grid. Funding from DOE (SCIDAC) and NSF. Pis: Small, Bryan, Tribbia, Dennis, Saravanan, Kwon, Schneider. Image by CISL VIS Lab.

A snapshot showing latent heat flux (grey scale, largest values shown in bright white are over 500Wm⁻²) overlaid on sea surface temperature (color). Warmest ocean temperatures are red, followed by yellow, green and blue. Note the influence of Gulf Stream meanders on a cold-air outbreak in the North-West Atlantic (red arrow) and a cold temperature wake beneath a Tropical Cyclone in the Indian Ocean (blue arrow), both features are not well simulated by standard resolution climate models.

Variable resolution

- CAM5-SE is configured with a variableresolution grid that ranges from 111-28 km. The 28 km grid zooms into the Atlantic basin to focus on hurricanes.
- Factor of 6 quicker than uniform 28 km simulation. Identical physics time step is used.

Variable-resolution grid of the model CAM5-SE that bridges the grid spacings 110-28 km in a single AMIP simulation. \

1-degree everywhere

1-degree to ¼-degree

Observations

CESM-Large Ensemble (LE)

- A CESM community project
 - 30+ ensemble members for historical (1920–2005) and RCP8.5
 (2006–2100) simula Vors
- To invesMgate climate change in the presence of internal climate variability (Kay et al. 2015, BAMS)
 - Key issue: how to sample internal climate variability?

CESM1 Large-Ensemble Future Blocking

DJF - RCP8.5: 2081-2100 minus 1850 control

30 Ensemble Member versus Mean (EM)

William Large, CGD Laboratory Director Tel: 303.497.1364 | Email: wily@ucar.edu

Ensemble of Ensembles: Design

- Start from different ICs from 1850 control (496) for all components (First ensemble member)
- Generate ensemble members in 1920 as for the exisMg CESM-LE
- 10 members are integrated to 1999 (historic simula Vons only)
- Otherwise, followed the CESM-LEprotocol (hc p s ://www2.cesm.ucar.edu/ models/experiments/LENS/instrucMm)

Ensemble of Ensembles: Results

AMOC

Predicted slow-down in the rate of Atlantic (90 E to 90 W) sea ice loss

• CESM1 decadal prediction simulations can skillfully predict decadal changes in the rate of Arctic winter sea ice loss in the Atlantic sector.

• The rapid retreat of the Atlantic ice edge between 1997-2007 could have been predicted.

• Future forecasts suggest that we should expect a hiatus in winter ice loss, with a possibility of decadal growth in coming years.

90E {

Yeager et al., 2015, GRL

Stratosphere Impacts on El Nino Response

Jan - Mar El Nino Anomaly

Richter, Sun, Deser, Bacmeister (2015), GRL, in preparation

NCAR | National Center for Atmospheric Research UCAR | Climate & Global Dynamics

climate • models • *society*

Societal Impacts of Society

Exposure to Extreme Heat on the Rise

1971-2000 vs. 2041-2070

Jones, O'Neill, McDaniel, McGinnis, Mearns, Tebaldi. 2015. Nature Climate Change.

Community Earth System Model

- Yellowstone-NWSC Accelerated Science Discovery Run
- Project support from DOE-BER and NSF

Highest Coupled Resolution

- Fully coupled CESM1-CAM5-SE simulations with a 25km atmosphere and 0.1° ocean
- 60 years in length
- Simulation output will be available soon through the Earth System Grid
- Please contact Justin Small (jsmall@ucar.edu) if you are interested in accessing the output

Courtesy of Justin Small, Tim Scheitlin

CLM with Ecosystem Demography model

Emergent community structure adapted to past climate

Common Infrastructure for Modeling the Earth : CIME A New Paradigm – all infrastructure is **Open Source**

IP still in place for prognostic components

All Infrastructure PUBLIC Open Source Github Repository -- deCESMized

Only Prognostic Model Components Stay in Restricted Subversion Repository

Changes in Tropical Cyclones

Simulations suggest the future will experience:

--• fewer hurricanes,

100

90

80

70

60

50

40

30

20

10

0

100%

All storms

Number of storms per year

 but the strongest storms will be more intense.

80%

Cat 4

Cat 3

96%

Cat 5

High resolution (0.25°) atmosphere simulations produce an excellent global hurricane climatology

Cat 1

100%

TS

Future (+2C, 2XCO₂)

100%

Cat 2

Courtesy of Michael Wehner, LBNL

Sea level: CESM-CISM

Average Net Surface Mass Budget

(Courtesy of Miren Vizcaino)

Present-day budgets compare well to RACMO

In 21st Century:

- Higher precipitation
- Larger melt
- Ablation area increases from 9% to 28% of ice sheet
- Equilibrium line ~500 m higher
- SMB increases over 2000m

NCAR CMIP6 Planning

Pacific Decadal Oscillation CMIP5

Timeline for CESM2

CLM versions and configurations

CLM5

- to be released June 2016 (CESM2; CMIP6)
 - global crop model with irrigation and fertilization (8 crop

types)

(50m ground),

- hydrology: dry surface layer, variable bedrock depth, 8.5m soil revised canopy interception
- snow: canopy snow updates, wind effects, firn model (12 layers)
- Model for Scale-Adaptive River Transport: hillslope \rightarrow

tributary \rightarrow main channel

- nitrogen – flexible leaf C:N ratio, leaf N optimization, C cost

for N

- ozone damage to plants
- fire trace gas and aerosol emissions
- plant hydraulics and prognostic roots
- dynamic landunits
- carbon and (water) isotope enabled
- Ecosystem Demography model

Sea Surface Temperature bias

CESM High-res Re HadSST Present

Comparison of ASD SST bias against standard resolution CESM 1850 run. Annual Mean.

Land Model Developments (CLM4.5)

(Pg)

Change in global terestrial C

Accumulated carbon

- - land cover change,
- + CO₂ fertilization
- +/- regional climate-carbon feedbacks.

Reduce N-limitation on CO_2 fertilization.

Courtesy of Dave Lawrence

Motivation & Goal

* Each 1% CO₂ increase

simula Mon started with

ensemble members are generated by perturbing

different ocean iniMal

condiMons and 50

SST

Probability of a cooling trend

Hawkins et al., submi7 ed to Clim. Dyn.

- The ocean has a relatively long "memory" (~decadal Mme scales)
- Spread and uncertainty of internal variability are expected to be different when considering different ocean iniMacondiMos(II)
- To sample internal variability arising due to different ocean ini; al states!

AMOC

