Earth system/climate modelling activities in Japan

Michio Kawamiya JAMSTEC

Lineup of Japanese models for CMIP6

	MIROC6-	MIROC-		MRI-	MRI-	
	CGCM	ESM	NICAM	ESM1.2	AGCM3.2	NHRCM
Resolution	140km or	140km-	14km-			
<u>(Atm.)</u>	finer	280km	56km	120km	< 20 km	O(5km)
				1deg. X		
Resolution	1deg. X	1deg. X		0.3-		
(Ocean)	1deg.	1deg.	n.a.	0.5deg.	n.a.	n.a.
High Top	Yes	Yes	Yes	Yes	Yes	
Biogeo-						
chemistry	No	Yes	No	Yes	No	No
	AORI/UT,	JAMSTEC,	AORI/UT,			
	JAMSTEC,	AORI/UT,	JAMSTEC			
Institutions	NIES	NIES	, RIKEN	MRI	MRI	MRI

Participation in endorsed MIPs

Short name of MIP	MIROC6- CGCM	MIROC- ESM	NICAM	MRI- ESM1.2	MRI- AGCM3.2	NHRCM
1 AerChemMIP	0	1	0	1	0	0
2C4MIP	0	1	0	1	0	0
3 CFMIP	1	0	1	1	0	0
4 DAMIP	1	0	0	1	0	0
5DCPP	1	0	0	1	0	0
6 FAFMIP	1	0	0	1	0	0
7GeoMIP	0	1	0	1	0	0
8 GMMIP	1	0	0	0	0	0
9HighResMIP	1	0	1	1	1	0
10ISMIP6	0	1	0	1	0	0
11LS3MIP	1	0	0	1	0	0
12LUMIP	0	1	0	0	0	0
13OMIP	1	1	0	1	0	0
14PMIP	0	1	0	1	0	0
15RFMIP	1	0	0	0	0	0
16ScenarioMIP	1	1	0	1	0	0
17VolMIP	0	1	0	1	0	0
18CORDEX	0	0	0	1	0	1
19DynVar	1	1	1	1	0	0
20 SIMIP	1	0	0	1	0	0
21 VIAAB	1	1	0	0	0	0
	13	11	3	17	1	1

Earth Simulator for most of the CMIP6 experiments

	Total Peak Performance (Pflops)	Total main memory (Tbyte)	Peak Performance / CPU (Gflops)	Total number of CPUs
Earth Simulator (JAMSTEC)	1.31	328	256 (4 cores)	5120
K Computer (Riken)	10.6	1,260	128 (16x8cores)	88,128

Earth Simulator: "medium" size simulations such as CMIP6 experiments. Operation started in March, 2015. K Computer: ambitious, gigantic size simulations such as global cloud resolving runs with 870m mesh

A. Prediction and diagnosis of imminent global climate change (PI: M. Kimoto, U. of Tokyo)

FY 2012-2016

Budget: ~6m\$/y

D/A, E/A, Seamless Prediction, Climate Sensitivity, Data Assimilation

B. Climate change projection contributing to stabilization target setting (PI: M. Kawamiya, JAMSTEC)

Climate Scenario, Earth System Model, Tipping Element, Geo-engineering

C. Development of basic technology for risk information on climate change (PI: I. Takayabu, MRI)

Dynamical and Statistical Downscaling, High-res GCM

- D. Precise impact assessments on climate change (PI: E. Nakakita, Kyoto U.) Weather, Water, Coastal Disasters, Water Resource, ecosystem ...
- E. Promotion office for climate change research and linkage coordination (PI: M. Kawamiya, JAMS 張氏) orted by MEXT 🔅 文部科学省 🗰 如何 🖉

SOUSEI is coming to an end in March 2017. A forum involving both scientists and the funding agency (MEXT) has been set up for establishing a follow-on project.

The K(京) Computer Project

K computer

• SPIRE (Strategic Program for Innovation Research, 2011-2015)

Five fields are specified to be strategically promoted

Field1 Life science and medicine Field2 Materials and energy Field3 Natural disaster Field4 Manufacturing technology Field5 The origin of universe A follow-on project has been established, which is now in a feasibility study phase.

• Field 3: Advanced Prediction Researches for Natural Disaster Prevention and Reduction

- Coordinated by JAMSTEC, in collaboration with other national labs and universities
- Meteorology
 - Tropical cyclones under global warming
 - Prediction of torrential rain
- Seismology
 - Earthquake hazard maps
 - Tsunami warning accuracy

What do we do with the limited computer resource?

"Detection & attribution" exp. for hiatus

Event attribution study: heat wave in Japan, 2013

Update from MIROC5 to MIROC6

AGCM (T85L81)

- Shallow convection
- Higher TOA (3hPa \rightarrow 0.004 hPa)
- Non-orographic gravity wave drag
- Improved cumulus momentum transfer
- Non-spherical cloud ice scattering
- \cdot Secondary organic aerosol, Organic aerosol from the ocean

<u>OGCM</u>

- Higher resolutions $(1.4^{\circ}x1.4^{\circ}xL50 \rightarrow 1^{\circ}x1^{\circ}xL63)$
- Tripolar horizontal coordinate
- Improved TKE input under sea ice
- Thermal vent at ocean floor, and vertical mixing due to tidal energy

(optional)

Land Surface Model

- Subgrid snow cover parameterization
- Representation of wet land due to snow-melting

Model update plan & particular interests

Socioeconomic impact of earth system uncertainty

the higher and lower bound emission scenario targeting the same concentration scenario.

2001 排出小/2050 排出小/2100 排出大/2050 排出大/2100 排出パス/年

Components in LTE: Ocean and Land

- C and N cycle (NPZD type)
 - N fix and Denitrification
- Fe cycle
 - Bioavailable Fe deposition
 - Fe reaching/inactivation
- O2 cycle
 - O2 dissolution
- P cycle (ocean-closed)

- C cycle
- N cycle
- From Atm: T2, Tsoil, Prec, Rad, etc
- To Atm: LAI, CO2 flux, N2O emission, etc
- To River: N mineral
- Land-use change (5 categories)

Nutrient transport from land to ocean through rivers

[Resent Research Activity]

- (1) River tracer scheme in MIROC-ESM
 - Code developed & implemented in MIROC-ESM.

Basin-total N:

N runoff in endorheic basins is redistributed to coastal river mouths for closing global N cycle.

Global Estimate:

30TgN/year (PI Natural systems) +50 TgN/year (Human systems) [Gruber & Galloway, 2008, Nature]

NICAM activity for CMIP6

- MIPs to join
 - HighResMIP: Tier I
 - dx=56km, 28km, *14km (* for short-term)
 - CFMIP: at least Tier I
 - amip4K, amip4xCO2, amipFuture
 - aquaControl, aqua4xCO2, aqua4K
 - DynVAR (diagnostic MIPs)

- Preparations (by JAMSTEC, U. Tokyo, RIKEN AICS)
 - Currently, a series of sensitivity experiments are performed in parallel with intensive model development (next slide).
 - NICAM.16 (NICAM for CMIP6) including well-tuned parameters and full CMOR support will be appeared in the middle of 2016.

NICAM Activity for CMIP6: development and key experiments

Cloud microphysics scheme

- Double moment (Seiki et al. 2015a).
- Modified single moment (Roh and Satoh 2014).
- Updated auto-conversion from cloud water to rain.

Coupling with aerosol model

• Coupling with aerosol transport model (SPRINTARS) is being tested.

Climate simulation

 dx=14km, 30-year present and future climate simulations (Kodama et al. 2015; Satoh et al, 2015)

Vertical resolution

- L46 L158 are being tested.
- dz = 400 100 m experiments to simulate cirrus (Seiki et al. 2015b).

Model top height

 40km -> 80 km model top height (Satoh et al. 2014).

Horizontal resolution

• dx = 14 - 3.5 km annual experiments.

Coupling with ocean model

 NICAM-COCO 10-yr stable run with dx=220 km (by H. Yashiro).

6UTC, 25 Aug. 2021 240 280 K-computer by Y. Miyamoto (AICS, RIKEN) 80

NICAM 870m-mesh simulation Miyamoto et al. (2013,GRL) using the K computer

dx=870 m

dx=3.5 m

vertical velocity w

JpGU-AGU joint session for earth system modelling section

- Background: JpGU (Japan Geoscience Union) and AGU are holding many joint sessions at 2016 JpGU meeting, as a preparation for full joint meetings in and after 2017.
- Session Title: Development and application of land and ocean biogeochemistry components of Earth system models
- Date: May 22-26, 2016
- Venue: Makuhari Messe, Chiba, Japan (30min. from Tokyo)
- Conveners: M. Kawamiya, V. Arora, K. Tachiiri and T. Hajima
- Abstract submission: Jan. 7 Feb. 18, 2016
- Keywords: Earth system model, Biogeochemistry, CMIP6, C4MIP, ...
- URL: http://www.jpgu.org/meeting_e2016/

Summary

- Japanese models for CMIP6
 - MIROC family (MIROC6, MIROC-ESM), NICAM, MRI models
 - With all the Japanese models combined, the endorsed MIPs are fully covered.
 - Computer resource: The Earth Simulator (1.3PFlops) run by JAMSTEC, plus MRI supercomputer
- Large ensemble experiments: MIROC6, MRI-ESM
 - Hiatus issue due to internal variation,
 - Event attribution for heat wave in Japan
- Earth system type of experiments: MIROC-ESM, MRI-ESM
 - Impact on earth system uncertainty on future socio-economics
 - Rivers connect land and ocean
- High resolution experiments: NICAM, MRI-AGCM
 - NICAM for HighresMIP, CFMIP & Dynvar, MRI-AGCM for HighresMIP
 - NICAM runs at 870m resolution on the K computer
 - Complex structure of vertical flow is only resolved at resolutions finer than ~1.7km