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1. Executive Summary

A  powerful  assortment  of  processed-based  metrics  have  been  developed  in  WP1
meeting the aims of Task1.1 and Task1.2 as quoted below from the Description of Work:

T1.1: Metrics will be developed to quantify the representation of processes
that involve mainly one component of the climate system when considering
their  impact  on European climate.  These will  include both aspects of  the
basic  mean state  (e.g.  mid-latitude  jet,  storm track,  ocean  heat  content)
together  with  weather-related  variability  and  extremes  (storm  clustering,
atmospheric  moisture  transport,  sea  ice  variability).  Metrics  will  be
combined to enable assessment of present day climate, and then used in
an attempt to understand and constrain future projections.

T1.2:  Metrics  will  be  developed to quantify  the  representation  of  coupled
processes and those processes that involve more than one component of
the  climate  system  and  their  impact  on  European  climate.  These  will
include  coupled  modes  of  variability  and  teleconnections  (North  Atlantic
Oscillation  (NAO),  Atlantic  Meridional  Overturning  Circulation  (AMOC),
troposphere-stratosphere coupling), local coupled feedbacks and indices of
climate extremes. Metrics will be combined to enable assessment of overall
present-day performance, and be used to understand and constrain future
projections.

Indeed,  as  presented  below,  emphasis  has  been  given  on  assessing  processes
dominantly affecting the European climate, directly or indirectly. Each of the developed
metrics is well-based on existing literature, while a series of new publications are made
and other are in progress documenting the background, the significance and the correct
interpretation of each of these new metrics.

A wide variety of tools (metrics) have been implemented on our data analysis platform,
and used to assess the multi-model, multi-resolution performance of the PRIMAVERA-
HighResMIP  model  simulations.  Such  summary  metrics  give  insight  into  the  model
performance, as well as enabling all project members to gain a quick understanding of
each models’ strengths and weaknesses.

Specifically, there are metrics focussing: 

1. on  atmospheric  processes  and  phenomena, such  as:  teleconnection  patterns
(§i3.2.1),  blocking  (§i3.2.4),  jet  variability  (§i3.2.5),  tropical  cyclones  (§i3.2.6,
§i3.2.12),  weather  regimes  (§i3.2.9)  and  extremes  in  precipitation  over  Europe
(§i3.2.11),

2. on oceanic and processes and the sea-ice, such as: sea-ice drift and its relation to
sea-ice  thickness  and  concentration  (§i3.2.2),  sea-ice  formation  efficiency  as  a
function of existing sea-ice volume (§i3.2.3),  ocean heat content and its changes
under  climate  change  (§i3.2.7),  variability  patterns  of  sea-ice  thickness  and
concentration  derived  through  clustering  analysis  (§i3.2.8),  freshwater  exports  in
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solid and liquid phase from certain basins (§i3.2.10) and the relationship between
ocean heat transports and sea-ice changes (§i3.2.13),

3. finally,  there  are  also  metrics  assessing  coupled  processes,  in  particular
evapotranspiration over land (§i3.2.14).

It is important to note that seven (7) out of the total fourteen (14) metricsi/iassessment tools
presented  here  have  been  particularly  developed  for  PRIMAVERA (referring  to:  §i3.2.2,
§i3.2.3, §i3.2.5, §i3.2.9, §i3.2.10, §i3.2.12, §i3.2.13), while for most of the remaining ones,
significant modifications were needed in order to render the respective codes fully functional
on JASMIN —so that  they can be smoothly  implemented into the ESMValTool— and to
increase the quality of the final output (graphics).

In addition, there are a few more coupled and single-component processes that are being
assessed in PRIMAVERA simulations, yet respective metrics are in development, or may
need  to  be  recoded  in  Python.  Although  this  is  work  that  will  be  done,  there  is  no
commitment that  the associated metrics will  be finally incorporated into the ESMValTool.
Such metrics will assess, for example, the North Atlantic stormtrack activity and variability
with methods different than storm-tracking (Athanasiadis et al., 2010) and certain aspects of
the  air—sea interaction  along  SST fronts,  in  particular  the  Gulf  Stream Extension  area
(Bishop et al., 2017; Putrasahan et al., 2013).
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2. Project Objectives

With  this  deliverable,  the  project  has  contributed  to  the  achievement  of  the  following
objectives (DOA, Part B Section 1.1) WP numbers are in brackets:

No. Objective Yes No

A
To develop a new generation of global high-resolution climate 
models. (3, 4, 6)

  X

B

To develop new strategies and tools for evaluating global high-
resolution climate models at a process level, and for quantifying 
the uncertainties in the predictions of regional climate. (1, 2, 5, 9,
10)

   X

C

To provide new high-resolution protocols and flagship simulations
for the World Climate Research Programme (WCRP)’s Coupled 
Model Intercomparison Project (CMIP6) project, to inform the 
Intergovernmental Panel on Climate Change (IPCC) 
assessments and in support of emerging Climate Services. (4, 6,
9)

   X

D

To explore the scientific and technological frontiers of capability 
in global climate modelling to provide guidance for the 
development of future generations of prediction systems, global 
climate and Earth System models (informing post-CMIP6 and 
beyond). (3, 4)

   X

E

To advance understanding of past and future, natural and 
anthropogenic, drivers of variability and changes in European 
climate, including high impact events, by exploiting new 
capabilities in high-resolution global climate modelling. (1, 2, 5)

   X

F

To produce new, more robust and trustworthy projections of 
European climate for the next few decades based on improved 
global models and advances in process understanding. (2, 3, 5, 
6, 10)

   X

G

To engage with targeted end-user groups in key European 
economic sectors to strengthen their competitiveness, growth, 
resilience and ability by exploiting new scientific progress. (10, 
11)

   X

H

To establish cooperation between science and policy actions at 
European and international level, to support the development of 
effective climate change policies, optimize public decision 
making and increase capability to manage climate risks. (5, 8, 
10)

   X
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3. Detailed Report

The work documented in this Deliverable aimed to contribute to the following two primary
PRIMAVERA objectives (quoted from Section 2):

• To  develop  new strategies  and  tools  for  evaluating  global  high-resolution
climate models at a process level, and for quantifying the uncertainties in the
predictions of regional climate.

• To advance  understanding  of  past  and  future,  natural  and anthropogenic,

drivers of variability and changes in European climate, including high impact
events,  by  exploiting  new  capabilities  in  high-resolution  global  climate
modelling.

WP1 has,  indeed,  provided a  spectrum of  processed-based  evaluation  tools  for  climate
models, optimized to aid the assessment of high-resolution climate models, as well as the
understanding of  drivers of climate variability and climate changes, particularly relevant to
European climate. These tools are documented in the remaining of this Section.

Also, a number of articles have been submitted, or are in preparation and will be submitted
in the next few months (2019). These include the following:

• Athanasiadis,  P.,  Baker,  A.  and  co-authors  (in  preparation):  Assessing  the

representation  of  the  North  Atlantic  eddy-driven  jet  in  PRIMAVERA  historical
simulations.

• Bellucci, A. and co-workers (in preparation): Air-sea interactions over the Gulf Stream

extension in HighResMIP models.

• Docquier, D., J. P. Grist, M. J. Roberts, C. D. Roberts, T. Semmler, L. Ponsoni, F.

Massonnet,  D.  Sidorenko,  D.  Sein,  D.  Iovino,  A.  Bellucci,  T.  Fichefet  (in  review).
Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport.

• Docquier, D. and co-authors (in preparation): The relationships between sea-ice and

ocean heat content variability in Barents and Bering Seas.

• Moreno-Chamarro, E., Ortega, P. and Massonnet, F. (in preparation): Impact of the

ice  thickness  distribution  on  sea  ice  interannual  variability  in  the  NEMO3.6-LIM3
global ocean-sea ice model.

• Roberts,  M.  J.,  and  co-authors  (in  preparation):  A comparison  of  three  popular

tropical cyclone tracking algorithms using CMIP6 HighResMIP model simulations.

• Schiemann,  R.,  Athanasiadis,  P.  and  co-authors  (in  preparation):  Northern

Hemisphere blocking in PRIMAVERA historical simulations: benefits from increasing
model resolution.
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• Strommen, K., I. Mavilia, S. Corti, M. Matsueda, P. Davini, J. von Hadenberg, P-L.

Vidale,  R.  Mizuta  (in  review).  The  Sensitivity  of  Euro-Atlantic  Regimes  to  Model
Horizontal Resolution.

3.1   PRIMAVERA processed-based model assessment tools

The developed WP1 metrics are to be implemented in a brand-new version of the Earth
System Model eValuation Tool (ESMValTool) that is aimed at handling efficiently large
data  volumes  as  produced  by  current  (and  beyond  current)  state-of-the-art  high-
resolution climate models.  This  implementation is  ongoing.  In fact,  as documented in
MS3, the implementation is already completed and tested for a small group of metrics.

Particular emphasis has been given in creating flexible and user-tuned tools so that the
sensitivity of the metrics themselves to various parameters and methods (as per case)
can be assessed. This is key for judging the robustness of the results and estimating
uncertainties. Moreover, different observational datasets (or reanalyses) can be used for
model  evaluation,  as  well  as  different  realisations  of  the  same  model  runs  (climate
experiments) as will arise from Stream-2 simulations. This will allow a better evaluation
of the uncertainties in estimating future climate change and in drawing conclusions on
the effect of increasing model resolution. The implemented  metrics will be delivered in
D1.3 with the completion of task T1.3, as described in the Description of Work:

T1.3 This task aims at providing a framework to integrate all the diagnostics
developed  to  address  the  metrics  described  in  Tasks  1.1  and  1.2  and  to
develop  a  long-term  solution  for  the  process-based  analysis  of  the
PRIMAVERA and CMIP6 European experiments (including HighResMIP). The
solution  will  be  based  on  existing  national  and  international  initiatives  to
develop  metrics  and  will  encompass  the  main  developments  in  metrics
performed in  PRIMAVERA. In  particular  this  task  entails  the  conversion of
AutoAssess  to  Python,  the  analysis  of  the  common  functionalities  of  the
EMBRACE and WGNE/WGCM diagnostic packages including the necessary
adaptations for  a special  focus on Europe and the design of a strategy for
common metrics and diagnostics for the analysis of the CMIP6 experiments
performed by European climate modelling institutions.

3.2   Processed-based metrics for single and coupled components

3.2.1   Implementation of CVDP on PRIMAVERA models   [SMHI]

We have  applied  the  Climate  Variability  Diagnostics  Package  (CVDP)  developed  by
NCAR's Climate Analysis Section to the analysis of stream-1 simulations. The CVDP is
an analysis tool that produces files with major modes of climate variability in models and
observations.   Among  the  modes  included  in  this  package  are  ENSO,  the  Pacific
Decadal Oscillation (PDO), the Atlantic Multi-decadal Oscillation (AMO), Northern and

PRIMAVERA (641727) Deliverable 1.2 Page 8



Southern  Annular  Modes  (NAM  and  SAM),  North  Atlantic  Oscillation  (NAO),  Pacific
North and South American teleconnection patterns (PNA and PSA).

The  CVDP  calculates  and  saves  as  NetCDF  time  series  of  the  different  modes  of
variability, their spatial patterns and power spectra.  CVDP also creates a web interface
to be able to analyse the output in a web page. Example output for some PRIMAVERA
models can be found in the following link: 

http://exporter.nsc.liu.se/2d2d9a3d8ad84338868530edf1937f73

The CVDP also computes climatological fields,  standard deviation and trend maps of
mean  sea  level  pressure,  precipitation,  surface  air  temperature  and  sea  surface
temperature.   We have also  implemented regridding  programs to  assess  changes in
spatial patterns on different variability modes due to increased model resolution.

      

Figure 3.2.1.1: Changes in SST anomalies related to ENSO due to changes in model
resolution for HadGEM3-GC3.1, ECMWF-IFS and MPI-ESM1-2. Units are degrees K.

3.2.2   Sea-ice drift - strength metric   [UCLouvain]

Both  seasonal  and  recent  long-term  changes  in  sea-ice  drift  speed  are  primarily
correlated  to  changes  in  sea-ice  strength,  more  precisely  sea-ice  concentration  and
thickness  (Olason  and  Notz,  2014).  On  seasonal  time  scales,  when  sea-ice
concentration  is  low (from June to November),  drift  speed increases with  decreasing
concentration,  while  for  high  concentration  (from  December  to  March),  drift  speed
changes  are  largely  driven  by  changes  in  thickness  (higher  drift  speed  with  lower
thickness). We have developed the sea-ice drift - strength metric that allows quantifying
these relationships. In particular, two different sub-metrics have been developed for the
two drift-concentration  and drift-thickness relationships:  (i)  a  slope ratio,  which is  the
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ratio  between  the  modelled  and  observed  drift  -  concentration  and  drift  -  thickness
slopes (the closer the slope ratio to 1, the better the agreement between the modelled
and  observed  relationships),  (ii)  an  error,  which  is  the  mean  normalized  distance
between modelled and observed points (the lower the distance, the closer the model to
observations).  A  detailed  description  of  these  sub-metrics  using  the  NEMO-LIM3.6
ocean - sea-ice model (forced by atmospheric reanalysis) and observational / reanalysis
datasets is provided in Docquier et al. (2017).

The codes of this metric are written in Python programming language and are available
on JASMIN as well as on the PRIMAVERA svn repository   so all PRIMAVERA members
can use it. A web page   explaining this metric is available on the PRIMAVERA wiki.  The
metric  has  been  refactored  (URL  )  and  is  now  close  to  be  fully  implemented  into
ESMValTool. It constitutes the main example of Deliverable D1.1.

The sea-ice drift - strength metric has been applied to PRIMAVERA Stream-1 coupled
hist-1950 simulations,  in particular  four different  model  configurations,  i.e.  HadGEM3-

LL, HadGEM3-MM, ECMWF-LR and ECMWF-HR. Figure 3.2.2.1 below  shows the sea-
ice  drift  -  thickness  slope  ratio  as  a  function  of  drift  -  concentration  slope  ratio  (left
panel), as well as the drift  - thickness error as a function of drift  - concentration error
(right  panel),  for  the  four  different  model  configurations  and  NEMO-LIM3.6.  No clear
sensitivity to model resolution is found related to this metric, but inclusion of more model
configurations in this study would be needed to increase the robustness of our findings.
In terms of slope ratios (Figure 3.2.2.1, left panel), ECMWF-LR and ECMWF-HR are the
closest model configurations to observations (they are close to 1:1). In terms of errors
(right panel), HadGEM3-MM and NEMO-LIM3.6 have the lowest drift - thickness errors,
while ECMWF-HR has the lowest drift - concentration error, compared to observations.
Note the unrealistically high error of ECMWF-LR (~250%), mostly due to high sea-ice
thickness compared to observations and reanalysis.

Figure  3.2.2.1: (left)  Sea-ice  drift–thickness  slope  ratio  as  a  function  of  sea-ice  drift–
concentration slope ratio. (right) Sea-ice drift – thickness error as a function of sea-ice drift–
concentration error (in %) for 4 PRIMAVERA model  configurations (hist-1950) and NEMO-
LIM3.6. Drift – concentration relationships are built using OSI SAF satellite observations, while
drift – thickness relationships are based on PIOMAS reanalysis. All results are averaged over
the period 1979-2014.
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3.2.3   Ice formation efficiency diagnostic   [UCLouvain]

A well-known feature of the Arctic climate is the existence of a powerful positive ice-albedo
feedback, in which sea-ice plays a central role (Screen and Simmonds, 2010). Less known
is  the  existence  of  a  set  of  strong  negative  feedbacks  (Notz  and  Bitz,  2017)  that  are
mitigating the sea-ice loss in response to external forcing. The simplest of these feedbacks
is  the  ‘negative  ice  growth  -  ice  thickness  feedback’:  since  heat  conduction  fluxes  are
inversely  proportional  to  sea-ice  thickness (all  other  things  being  equal),  thin  ice  has  a
tendency to grow faster than thick ice. That is, late-summer negative anomalies of sea-ice
thickness will be partly recovered during ice growth. We constructed a diagnostic named the
‘Ice Formation Efficiency’ (IFE) to measure this feedback indirectly. The IFE is estimated as
the regression between minimum sea-ice volume for one year and the volume gained until
the  following winter  maximum. It  has  been applied  to  the CMIP5 ensemble  in  a recent
publication (Massonnet et al., 2018). The main finding was that (1) the IFE, along with its
corresponding diagnostic for the melting season, are good predictors for the interannual to
multi-decadal sea-ice volume changes in the Arctic and (2) that the IFE is a strong function
of the background mean sea-ice state, and less so of the type of sea-ice model used.

The  diagnostic  is  available  from  the  ESMValTool  private  repository
(https://github.com/ESMValGroup/ESMValTool-private  )  and  from  F.  Massonnet’s  Github
Page  (https://github.com/fmassonn/paper-arctic-processes  )  as  a  Python  function.  The
function returns an estimate of the IFE along with error statistics and requires as input the
monthly time series of Arctic sea-ice volume north of 80°N.

Figure 3.2.3.1: Ice Formation Efficiency (IFE) as a function of
mean  sea-ice  volume  for  HadGEM3-LL  (red),  HadGEM3-MM
(blue),  HadGEM3-HM (yellow),  ECMWF-LR  (green),  ECMWF-
HR (pink).

The IFE diagnostic was applied to 5 model configurations from PRIMAVERA (HadGEM3-LL,
HadGEM3-MM, HadGEM3-HM, ECMWF-LR, ECMWF-HR; Figure 3.2.3.1). The dependence
of  the  IFE to  the background  mean sea-ice  state  (defined as  the annual-mean sea-ice
volume north of 80°N), initially found in Massonnet et al. (2018) with CMIP5 models, was
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confirmed with the PRIMAVERA data. Since the high-resolution versions of the models tend
to have lower climatological sea-ice volumes because of increased poleward oceanic heat
transport, they also tend to simulate higher absolute values of the IFE. This corresponds to
the notion that the negative ice growth - ice thickness feedback is stronger for thin ice (Bitz
and Roe, 2004). Therefore, we conclude that across the range of resolutions studied, the
efficiency of vertical sea-ice formation is sensitive to horizontal resolution, but this link is
indirect: enhanced sea-ice formation efficiency is a consequence of lower baseline sea-ice
thickness, which itself is a consequence of enhanced poleward heat flux that is caused by
the resolution increase.

3.2.4   Northern hemisphere blocking   [UREAD, CMCC]

Introduction: Multiple  studies  have  shown  that  an  increase  in  atmospheric  resolution
generally  benefits  the  representation  of  blocking  in  climate  models,  though  blocking
simulation is also sensitive to a number of other factors including vertical resolution, sea
surface temperature,  the representation of  orography,  physical  parametrisations,  and the
dynamical core numerical scheme (Woollings et al., 2018). This continues to hold true as the
resolution  in  atmosphere-only  simulations  is  increased  from  O(100km)  to  O(20km),  but
several  models  continue  to  exhibit  sizeable  biases  even  at  about  20km  resolution
(Schiemann et al., 2017), and improvements seen in blocking have been shown to be due to
compensating biases in the representation of eddies in one high-resolution model (Davini et
al., 2017). Here, we evaluate the representation of blocking in the PRIMAVERA Stream-1
multi-model ensemble focussing in particular on whether benefits seen at higher resolution in
atmosphere-only simulations are also seen in coupled atmosphere-ocean simulations.

Blocking indices and metrics: We use a one-dimensional and a two-dimensional blocking
index. The one-dimensional index detects instantaneous blocking along the central blocking
latitude (CBL) as in Athanasiadis et al., 2014. For each calendar season, the CBL is defined
by  ERA-Interim.  The  presented  zonal  profiles  (Figures  3.2.4.1  and  3.2.4.2)  have  been
smoothed with a 3-point running average. For the one-dimensional blocking analysis, daily
Z500 data from each model have been interpolated from the respective native grid to a
courser regular grid (2.5° x 2.5°). The one-dimensional index is applied both without and with
mean-bias correction following Scaife at al., 2010. At each grid point, mean bias correction
has been accomplished by subtracting the model daily climatology (smoothed by 30-day
running average) to compute Z500 daily anomalies and subsequently adding the respective
daily observed (reanalysis) climatology. 

The two-dimensional blocking index is  the Absolute Geopotential  Height  (AGP) index as
used by Scherrer et al., 2006. For a grid box to be identified as blocked, three criteria need
to be fulfilled by the Z500 geopotential height field; (i) the climatologically negative equator-
to-pole gradient must be reversed to the south of the grid box, (ii) there must be westerlies to
the north of the grid box, and (iii) conditions (i) and (ii) must hold for at least 5 consecutive
days.

Data: The  two-dimensional  blocking  analysis  has  been  applied  to  four  (4)  PRIMAVERA
models  (EC-Earth3,  ECMWF-IFS,  MPI-ESM-1-2,  HadGEM3-GC31)  and  the  respective
atmosphere-only  (highresSST-present)  and  coupled  (hist-1950)  historical  Stream-1
simulations, as listed in Table 3.2.4.1. The simulated blocking is compared against that seen
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in reanalyses data (NCEP-NCAR, ERA40, ERA-Interim). For the one-dimensional blocking,
the  results  shown  here  are  for  (3)  PRIMAVERA models  (ECMWF-IFS,  MPI-ESM-1-2,
CMCC-CM2) with other details as above, that is for both the atmosphere-only (highresSST-
present) and coupled (hist-1950) historical Stream-1 simulations.

Table 3.2.4.1: Ensemble of Stream-1 simulations the 2D blocking index has been applied to.

Experiment (coupling) center/Model Resolution
atmosphere

Resolution
ocean

Notional
resolution

highresSST-present 
(forced)

MOHC HadGEM3-GC31

N96

(0.25° daily 
HadISST2)

L

N216 M

N512 H

ECMWF IFS
Tco199 L

Tco399 H

EC-Earth-Consortium EC-Earth3
TL255 M

TL511 H

MPI-M MPI-ESM1-2
T127 L

T255 M

hist-1950 (coupled)

MOHC HadGEM3-GC31

N96 1° (1/3° tropics) LL

N216 ¼° MM

N512 ¼° HM

N512 1/12° HH

ECMWF IFS
Tco199 1° LL

Tco399 ¼° HM

EC-Earth-Consortium EC-Earth3
TL255 1° ML

TL511 ¼° HM

MPI-M MPI-ESM1-2
T127 TP04 LM

T255 TP04 MM

Selected results:  Figure 3.2.4.1 shows results for  the one-dimensional  blocking obtained
with and without mean-bias correction for the atmosphere-only simulations. In agreement
with previous studies, models tend to underestimate Euro/Atlantic blocking considerably and
this result is not found to be sensitive to model resolution. For all models, large part of the
blocking bias disappears after mean-bias correction indicating that the former is reflected in
(due to) the mean geopotential height bias of each model. Considering the results without
mean-bias  correction,  the  blocking biases are generally  larger  in  the respective coupled
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simulations (Figure 3.2.4.2) as opposed to the atmosphere-only simulations (Figure 3.2.4.1),
forced with observed SSTs, arguably due to the resulting SST biases in the former. There is
work in progress aiming at attributing biases in temperature and precipitation (as well as in
the frequency and severity of weather extremes) to the biases found in blocking.

Figure 3.2.4.1: 1D blocking index for a number of atmosphere-only simulations (highresSST-present)
at high-resolution (solid), low-resolution (dashed), and for NCEP/NCAR reanalysis (black). The bottom
panel shows the blocking index after correcting the model mean state to the reanalysis mean state,
and the top panel shows the blocking index for the uncorrected model data.

We further assess the simulated blocking frequency and geographical pattern of blocking
distribution by means of the two-dimensional index. The frequency of blocked days over
European domains for winter and summer is shown in Figure 3.2.4.3. During winter,  the
PRIMAVERA Stream-1  simulations  underestimate  blocking  frequency,  which  is  a  long-
standing bias in climate models, yet some models attain about 80% of the observed blocking
frequency. There appears to be a small improvement with resolution for the four coupled
models, but not in the forced models. Three of the four models simulate higher blocking
frequencies than seen in the CMIP5 multi-model mean, yet this is not seen when considering
the  CMIP5  mean  from  the  same  modelling  centers  only.  During  summer,  the  models
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underestimate European blocking by about 50%, more so than in winter and also more than
seen in the CMIP5 models. There is no systematic resolution sensitivity in this metric in
summer.

We proceed by evaluating the geographical pattern of blocking occurrence (Figure 3.2.4.4).
This figure shows scatter plots of the root-mean-square error and the spatial correlation with
respect  to the reanalysis climatology so that  the better the agreement between a model
simulation and the reanalysis, the further will the corresponding entry be located in the lower
right of the scatter plot. During winter, an improvement in the simulated pattern can be seen
in three out of the four forced simulations, and in the coupled simulations the improvement is
larger and can be seen for  all  four models.  It  can also be seen that  the high-resolution
PRIMAVERA Stream-1 models show an improvement with respect to the CMIP5 multi-model
mean,  even  if  only  models  from  the  same  modelling  centers  are  considered.  Similar
conclusions can be drawn for summer. Across the four models considered here, a model’s
ability to capture the pattern of blocking occurrence in winter is no indication of how well it
will perform in summer, as seen, for example, by the comparatively close agreement with
reanalysis  of  the  MOHC HadGEM3-GC31  model  in  winter  and  the  comparatively  large
disagreement with reanalysis of the same model in summer.

Figure 3.2.4.2: As in Fig. 3.2.4.1 but for the respective coupled Stream-1 simulations (hist-1950).

PRIMAVERA (641727) Deliverable 1.2Page 15



Eventually, the respective metrics as implemented in the ESMValTool, will allow the user to
produce results for a specific area of interest by defining the respective Lat-Lon box.

Figure 3.2.4.3: Domain-mean blocking frequency for (left) DJF and a Northern European domain
(reanalysis climatology and domain in inset) and (right)  JJA and a Baltic domain. Forced and
coupled models are shown in terms of their notional resolutions (Table 1). CMIP5 MMM denotes
the CMIP5 multi-model mean and CMIP5 3MM denotes the mean over the models from three
centers only (EC-Earth Consortium, MOHC, MPI-M). ERA denotes the reanalysis mean.

Figure 3.2.4.4: Blocking frequency root-mean square error and spatial correlation with respect to
reanalysis climatology over the Atlantic European sector (insets show reanalysis climatology and
domain) for (left) DJF and (right) JJA and for forced and coupled simulations as in Table 1. CMIP5
MMM denotes the CMIP5 multi-model mean and CMIP5 3MM denotes the mean over the models
from three centers only (EC-Earth Consortium, MOHC, MPI-M).

3.2.5   Position and strength of the North Atlantic eddy-driven jet  [CMCC, UREAD]

Introduction: Despite improvements over previous generations of climate models (Hannachi
et al., 2013; Iqbal et al., 2018 ), an accurate representation of the pulses and the latitudinal
shifts of the North Atlantic eddy-driven jet remains a challenge, upon which depends the
representation of important aspects of European climate, including weather extremes and
the frequency of severe prolonged anomalies, such as cold spells, dry spells and heat waves
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(e.g. Woollings, 2010; Buehler et al.,2011). Thus, assessing the representation of the jet
climatology and variability in the current generation of climate models is fundamental for
understanding the strengths and the weaknesses of these models for European applications.

In PRIMAVERA WP1 we developed a powerful and concise metric for this purpose.

Methodology: To  identify  the  eddy-driven  jet,  daily  mean  u-wind  field  at  850  hPa  was
extracted from each highresSST-present  simulations  and interpolated from native  model
grids to a 2.5°xi2.5°  regular  grid.  Following Woollings et  al.  (2010)  and Woollings et  al.
(2018) and applying an additional orography mask (to account for the 850 hPa isobaric level
being underground over most of Greenland). Jet latitude and jet speed are defined over the
domain 0-60W and the respective bivariate distributions were determined for each simulation
and the NCEP/NCAR reanalysis, binned at 2.5° latitude and 1.0 mis-1 speed and smoothed
by  a  PDF  kernel  (Silverman,  1986).  The  results  are  largely  insensitive  to  the  kernel
estimation method, the practical effect of which is smoothing.

Results: Here we present results for three (3) PRIMAVERA models (ECMWF-IFS, MPI-ESM-
1-2 and CMCC-CM2) and for both the atmosphere-only (highresSST-present) and coupled
(hist-1950)  historical  Stream-1 simulations  conducted  with  these models  at  two different
resolutions (low-resolution: LR, high-resolution: HR). Nevertheless, the scope here is not to
assess the role of increasing model resolution but to document the metric and its use.

The model biases displayed in Fig. 3.2.5.1 (LR left, HR right) make evident that there are
significant differences across models in the representation of the North Atlantic jet. While the
ECMWF-IFS model exhibits small biases in the bivariate distribution of the jet, capturing well
the trimodality of the jet latitude distribution, the CMCC-CM2 model has large biases in the
distribution of both the jet speed and jet latitude, indicating also a misrepresentation of the
Euro-Atlantic low-frequency variability patterns, referring to blocking (§ 3.2.4) and circulation
regimes  (§  3.2.9).  More  specifically,  the  CMCC-CM2  model,  which  is  used  here  for
demonstrating the power and the interpretation of the metric, exhibits an overly strong jet
that also has a narrower meridional distribution compared to the observed jet (Fig. 3.2.5.1,
bottom row). Given that the jet moves to the south during blocking over Greenland and to the
north when blocking occurs at the eastern part of the North Atlantic, the above-described jet
biases signify, also, large biases in the climatological blocking distribution.

It is fair to ask whether a single realisation/member from a model configuration is sufficient
for assessing its jet representation. Fortunately, results from a recent study (Kwon et at.,
2018) using large ensembles, referring to the Large Ensemble Simulations (LENS) run with
the Community Earth System Model (CESM) v.1, provide evidence that the jet statistics over
a  similar  historical  period  (1951–2005)  exhibit  little  intra-ensemble  spread.  Stream-2
PRIMAVERA simulations provide us the possibility to re-assess the intra-ensemble spread
and use the latter to evaluate the respective uncertainty.

This gives us confidence that for certain diagnostics single-member analyses are a viable
option.

Forthcoming  research Eddy-driven  jet  tilt  diagnostics.  Extension  of  these  analyses  to
coupled simulations upon delivery by PRIMAVERA partners.
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Figure 3.2.5.1:  Model biases in the bivariate distribution of the North Atlantic eddy-driven jet for the
low- and high-resolution version of three PRIMAVERA models. Here results from the atmosphere-only
(highresSST-present)  simulations  are  shown.  The  jet  latitude  (x-axis)  and  jet  speed  (y-axis)
correspond to the respective indices defined daily as described in the text. Biases are computed in
respect to the NCEP/NCAR reanalysis for the same period (1950–2014). The black line segment at
the center of each panel connects the mean position and strength of the jet in the reanalysis and in
the  model  (round  marker).  Units:  relative  frequency  density  multiplied  by  103.  Distributions  are
estimated by a PDF kernel.
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Figure 3.2.5.2:  As in Fig. 3.2.5.1 but for the respective coupled Stream-1 simulations (hist-1950).

3.2.6   Tropical cyclone tracker   [BSC]

Regarding tropical cyclone tracking, the reader is kindly pointed also to Section 3.2.12.

This tool detects the formation and propagation of tropical cyclones in climate simulations in
order to provide an estimate of global tropical cyclone activity. The core tracking algorithm is
derived from the GFDL Vortex Tracker V3.5b, which was modified to read PRIMAVERA data
and  complemented  with  some  post-processing  tools  (statistics  at  the  global,  basin  and
individual storm level and plotting tools). The tracker has also been modified to run with bsub
on JASMIN in order to take advantage of the multi-core environment. Maximum or minimum
values of different atmospheric fields (3-hourly / 6-hourly) are used to track the position of
the hurricane center:
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 mean sea level pressure (mandatory)

 vorticity or wind velocity at 850 and 700 hPa,

 geopotential height at 850 and 700 hPa,

 wind speed at 10m.

Wind  velocities  in  the  mid-troposphere  are  also  mandatory  to  estimate  the  subsequent
position of the storm and to construct the track. Winds at 850 or 700 hpa can be used, but
winds  at  500  hPa  give  the  best  result.   The  BSC  Cyclone  Tracker  is  stored  in  the
PRIMAVERA repository    under svn. It can be viewed on a web browser at this URL      .

The full documentation on how to run the tracker can be found online, and more information
about the original GFDL Vortex tracker can be found on the DTC (Development Testbed
Center) Users' guide.

The tracker provides an estimate of the cyclone center position (latitude and longitude) along
with metrics for  intensity  and structure at  each time-step,  such as the minimum surface
pressure in the center of the storm, the maximum surface winds near the center of the storm
and the radii of maximum wind speed in the four different quadrants. The algorithm can also
construct the cyclone phase diagrams for each detected cyclone if the necessary fields are
present.  The tracker also includes some post-processing tools analysing the cyclones that
have been detected, such as the integrated kinetic energy, the storm lifetime, the full yearly
activity sorted by basins (see Figure 3.2.6.1) and the number of storms making landfalls.

Figure  3.2.6.1: The  different  basins  of  tropical  cyclone  activity
considered by the tropical cyclone tracker.

The  figure  below  (Figure  3.2.6.2)  shows  the  tracks  identified  in  a  6-month  simulation
performed with EC-Earth3. We note that both the general level of simulated activity as well
as the intensity of the storms are much lower than in the real world, but that is standard for
climate models. We note however that tropical cyclone activity is detected in all the major
basins of the northern hemisphere: eastern North Pacific, western North Pacific and North
Atlantic.
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Figure  3.2.6.2: Tropical  cyclones  detected  during  6  months  of  simulation
performed with EC-Earth3.

The figure below (Figure 3.2.6.3) gives an idea of the post-processing tools that have been
added to the tracker. It shows the track of a particular cyclone (top left), the Hart diagrams
(right column), and the evolution of the intensity of the storm, as measured by the maximum
wind speed, minimum surface pressure and integrated kinetic energy (bottom left).

Figure 3.2.6.3: Example of information provided by the tracker on the evolution of a given
tropical  cyclone. Top left:  the track and it’s  intensity (in knots).  Bottom left:  the maximum
surface winds (purple),  the minimum surface pressure (yellow)  and the integrated kinetic
energy (green). Right column: Hart diagrams.

3.2.7   Ocean Heat Content   [BSC]

The ocean has the largest heat capacity of the Earth system and dominates the Earth’s heat
balance. Most of the total warming caused by climate change is manifested in increased
OHC, which in turn causes thermal expansion and sea level rise. Estimating the OHC, with
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the OHC tool, in simulations of the pre-industrial climate, is fundamental for understanding
the energy balance occurring in the absence of external forcing and under natural variability,
and how the oceanic changes relate to the surface climate variability.  OHC estimates in
simulations of future climate are important for assessing the oceanic response to the surface
forcing, the heat uptake by the ocean and how they impact surface climate change.

The Ocean Heat Content (OHC) tool is a python-based script  which calculates the heat
content of the global ocean, or of a given oceanic basin. It needs as input a time series of a
3D  ocean  temperature  field,  the  land-sea  mask,  the  grid  information  (the  grid  box
dimensions dx, dy and dz) and a basin mask. The output can be a 2D field of the depth-
integrated OHC, or a timeseries of the volume integrated OHC, depending on user request.
The basin(s) and depth level(s) are specified by the user. The function requires a certain
number of python libraries (for cdo, nco operations) which can be installed in a user-specific
environment. It is available to run on JASMIN as a standalone script in:

/gws/nopw/j04/primavera1/tools/WP2/Topic16_NA/Ocean_heat_content

There  is  also  a  fully  functional  version of  this  tool  in  the  Primavera_ohc branch  of  the
ESMValTool’s  GitHub  repository  (https://github.com/ESMValGroup/ESMValTool).  This
version is  fully functional,  but  the plots are not  as polished as they could be and some
options (i.e. computing volume integration for multiple basins) are still missing. Also, since
ocean  cell  area  information  (stored  in  areacello)  is  not  available  in  the cmor  files  for
PRIMAVERA runs,  it  is  difficult  and  time  consuming  to  produce  results  across  different
models, as it requires specific code for each model. Support for running this tool is made
available through Gitlab at URL      .

The Ocean Heat Content tool aims to assess the heat content of the ocean, either integrated
over depth (in units of J/m2) or integrated over volume (in units of J). It is used to assess
anomalies of OHC, which in turn can be used in studies to track oceanic heat uptake and
redistribution. 

The  tool  allows  comparison  of  ocean  heat  content  between  different  PRIMAVERA
simulations. This is demonstrated in Figure 3.2.7.1 using pre-PRIMAVERA simulations, while
the metric is being applied to Stream-1/2 PRIMAVERA simulations.
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Figure 3.2.7.1: Top row: Ocean heat content from the surface to 300m (in J/m2). Bottom row: Ocean
heat content between 300-800m (in J/m2). The panels in the three leftmost columns show the OHC for
the HadGEM3-GC2 model, which all share the same ocean model resolution (ORCA025 grid), but are
coupled to atmospheric models with different resolutions, namely N512, N216 and N96. The panels in
the rightmost column are from the EC-Earth3P-HR configuration, which uses a ORCA025 grid in the
ocean and a T511 grid in the atmosphere.  

Figure 3.2.7.2: Average November climatology of ocean heat content for the 0-300m layer for the
PRIMAVERA EC-Earth3  (left)  and  the  CMIP5  GFDL-ESM2G  (right)  historical  simulations.  The
climatology is computed for the period 1950–1999.
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Figure 3.2.7.3: Global ocean heat content for the 1000–3000m layer for
the  PRIMAVERA EC-Earth3P-HR  simulations  and  3  different  CMIP5
models.

A great  advantage of  the  latest  version of  the  tool  is  that  it  has  the ability  to  compare
PRIMAVERA against other experiments. Such a comparison is shown below. It shows the
PRIMAVERA EC-Earth3-HR control-1950 run along with three CMIP5 historical runs for the
period 1950–1999. Adding extra CMIP5 runs to an analysis is just a matter of defining the
appropriate simulations in the ESMValTool recipe. This feature will  also be available with
CMIP6 simulations once CMIP6 simulations become available.

3.2.8   K-mean clustering of sea-ice   [BSC]

The K-means clustering method partitions data into groups or clusters based on the distance
that separates them. The method aims to simultaneously minimize the distance between the
members of a given cluster/mode and maximize the distance between the centers of the
different  clusters.  The variable  required to run this  sea-ice  clustering  algorithm is  either
monthly mean of sea-ice thickness or monthly mean of sea-ice concentration. The number of
cluster  K, found to be three in this case,  is determined using a set of  clustering validity
indices (Fučkar et al.,2016). 

K-means clustering is available through the  s2d verification R-package  . An installation is
available on JASMIN through a conda environment. To use it,  one needs to execute the
following commands:

export PATH=/home/users/jvegas/miniconda3/bin:$PATH

source activate s2dv

It is installed in the home filesystem instead of the group workspaces for better performance,
as the new Jasmin4 group workspaces are very inefficient when dealing with small files.

This  branch  includes  the  relevant  documentation  (see  SeaIceModes  ).  The  branch  also
contains a vignette explaining the Weather Regimes function. The example in that vignette
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can be used as a starting point to run the cluster analysis for sea-ice by modifying the input
data and replacing the call to WeatherRegimes   with a call to SeaIceModes.

This cluster  analysis  represents  the large-scale  climate  variability  as  variations  in  the
occurrence of a limited number of representative spatial patterns (clusters).  In  other  words,
a  K-means  mode,  or cluster, is  characterized  by  a  spatial  pattern  and  discrete time
series of its occurrence. While the EOF  analysis  has  the  advantage  of  parsimony  in  the
context  of  explaining  a  maximum amount  of  data  variance, the K-means cluster analysis
has the advantage of  finding patterns that  maximize similarity  between clusters and the
fields that belong to those clusters, without orthogonality or linearity constraints. 

The K-mean clustering technique can be used to extract robust modes of Arctic interannual
sea-ice variability and to investigate potential mechanisms leading to these modes. As an
example,  we  show  below  (Figure  3.2.8.1)  the  modes  of  variability  of  Arctic  sea-ice
concentration,  after  removing the long-term trend using a spatially  varying second order
polynomial fit for the January-March season.

Figure 3.2.8.1: Top: Winter (JFM) cluster patterns of anomalous sea-ice concentration in
OSISAF (EUMETSAT SAF, 2016), with their respective percentage of occurrence over the
period 1979–2015. Clusters in HadISST (Titchner and Rayner, 2014) and NSIDC (Cavalieri
et al.,  1996) are very similar and therefore are not shown. Bottom: the associated time
series  of  cluster  occurrences  and  the  Euclidean  distance  (RMS difference)  between  a
pattern  in  a  year  and  the  associated  cluster,  with  a  larger  symbols  indicating  a  larger
distance.

This particular metric was used in WP3 to explore the impact of different configurations of
the sea-ice thickness distribution (ITD) on the variability of the sea-ice concentration. To
evaluate the impact of the ITD configuration on the sea-ice concentration, we compared the
spatial correlation of the observed and simulated clusters (Figure 3.2.8.2). A similar analysis
is planned by BSC once the melt pond scheme is made available in EC-Earth3P.
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Figure 3.2.8.2: Spatial correlation coefficients between the observed and the simulated clusters
in  winter  (JFM;  top)  and  summer  (ASO;  bottom).  Each  different  column  corresponds  to  a
different  experimental  set  up.  The  spatial  correlation  coefficients  between  the  different
observational products for each cluster are also shown.

In winter the impact of the different ITD configuration is small and most simulations capture
well  the observed cluster  of  variability;  nonetheless,  there is  a slight  drop in  the spatial
correlation  coefficient  in  the  third  clusters  for  a  very  high  number  of  categories,  which
appears related to a too-high refinement of the thinnest ice. In summer, the ITD configuration
has a slightly bigger impact, especially for the second cluster. 

In this exercise, it is difficult to draw any particular conclusions beyond that one category
tends to perform the worst, or that a particular setup is inappropriate.

3.2.9   Wintertime Euro-Atlantic Weather Regimes   [CNR]

Over the last couple of decades evidence has begun to increase that indicates the geometry
of  the  atmosphere’s  climate  attractor  exhibits  a  specific  local  structure  characterised by
quasi-persistent weather regimes (Kimoto and Ghil 1993; Cheng and Wallace 1993; Straus
et al., 2007; Hannachi et al., 2017). 

Weather Regimes (WRs) are persistent dynamical patterns that can last from a few days to
two or three weeks.  (Straus et al., 2007; Dawson et al., 2012; Hannachi et al., 2017). They
have been mostly  studied in  the wintertime extra-tropical  atmospheric  circulation  for  the
Pacific-North American and Euro-Atlantic sectors (where the non-normality in the PDF of
large scale atmospheric circulation has been confirmed to a high significance) using daily
500 hPa geopotential fields. However, similar analysis have also been successfully applied
to different atmospheric fields in other regions and seasons to characterize important climate
processes (e.g. Molteni et al., 2003).

In recent years, there has been increasing interest in studying WRs and how well climate
models reproduce them, due to their importance in influencing regional weather patterns and
possibly future regional changes in the climate state (e.g. Corti et al., 1999; Cattiaux et al.,
2103; Matsueda et al., 2018).
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Figure 3.2.9.1: Patterns of observed wintertime Weather Regimes in the Euro-
Atlantic sector as seen from ERA-Interim reanalysis in the period 1979–2010.

In the following we describe the functioning of WRtool, a tool for the assessment of Weather
Regimes in climate models. After a technical description of the metric itself, we will show  its
application to the PRIMAVERA Stream-1 coupled simulations and briefly discuss the main
results.

The analysis is performed on daily 500 hPa geopotential height fields. First of all, the daily
anomaly  field  is  computed  subtracting  the model  mean daily  climatology  and  optionally
detrending it. The detrending is necessary for transient runs. The user defines a range of
years to be considered, the season and the geographical area to be analyzed. An Empirical
Orthogonal Function (EOF) decomposition is then applied to the anomaly fields. The number
of Principal Components (PCs) to be retained are chosen by the user either selecting the
number  itself,  or  setting the total  variance to be explained by the PCs. WRs are finally
identified  by  applying  a  K-means  clustering  algorithm  to  the  PCs  in  the  phase  space
spanned by the said EOFs. The number of clusters to be computed can be defined by the
user as well. The tool first calculates the WRs for the reanalysis (ERA-Interim or NCEP) and
then it performs the WRs computation for each  model considered. Each model’s clusters
are  automatically  matched  with  the  ones  obtained  from reanalysis  data,  minimizing  the
relative errors for all possible permutations.
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Figure  3.2.9.2: Taylor  diagrams  measuring  the  performance  of  each  model  in
simulating the wintertime WRs in the Euro-Atlantic sector.

Here we show, as an example, the application of  WRstool to the 500 hPa daily winter fields
(DJF) in the Euro-Atlantic sector (EAT) for the ERA-Interim reanalysis in the period 1979–
2010. A significant part of the observed variability is obtained with 4 clusters (Figure 3.2.9.1),
representing the following WRs: NAO+, Scandinavian Blocking, NAO- and Atlantic Ridge.

The  comparison  between  the  observed  and  simulated  WRs  is  carried  out  considering
different features related to the quality of the model simulations, which lead to the definition
of  specific  metrics.  The  first  metric  measures  how  well  the  simulated  regime  patterns
resemble the observed ones. A measure of this is given by a Taylor diagram (Taylor, 2001)
for  each  WR,  which  summarizes  the  performance  of  all  models  with  respect  to  the
reanalysis. The radial axis of the Taylor plot measures the internal standard deviation of the
pattern, and the polar axis measures the pattern correlation. The difference between the
corresponding observed and model clusters provides a measure of the quality of the WR
representation in that model. The closer the two corresponding clusters are, the better that
given WR pattern  is represented.

The result of this first metric on the PRIMAVERA Stream-1 coupled simulations is shown in
Figure 3.2.9.2. The period considered for the simulations is 1979–2010, as for ERA-Interim.
The  performance  of  the  coupled  models  is  generally  worse  than  those  of  the  AMIP
simulations  (shown  in  the  D2.2  deliverable),  due  to  the  missing  coherent  SST forcing.
Nevertheless, some models perform very well for some WRs, although very few of them are
able to reach a pattern correlation larger than 80% for all WRs. Figure 3.2.9.3 shows the
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comparison with ERA-Interim for the ECMWF-HR Scandinavian Blocking regime, which is
the closest to the observed one.

Figure 3.2.9.3: Comparison between the observed Scandinavian Blocking pattern and the
one simulated by ECMWF-HR.

The second metric quantifies the model performance in reproducing the observed frequency
of each WR. This is yet a difficult task for coupled models, which show large differences with
respect  to  the  observed  frequencies,  as  shown  in  Figure  3.2.9.4.  Models  tend  to
underestimate the occurrence of the NAO+ regime, while they overestimate the occurrence
of NAO- and Atlantic Ridge regimes. For the Sc. Blocking regime some models get very
close to the observed frequency, while others tend to underestimate it.

Figure  3.2.9.4: Frequencies  of  occurrence  for  each  regime  and  each  model
considered, in comparison with the observed frequencies in the period 1979–2010.
The  x-axis  labels  signify  the  four  WRs:  ''NP''  for  NAO+,  ''BL''  for  Scandinavian
Blocking, ''AR'' for Atlantic Ridge and ''NN'' for NAO-.
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Figure 3.2.9.5: Significance of the cluster partition for each model considered with
respect to ERA-Interim.

Finally, it is important to assess whether the simulated fields show the same tendency to
cluster around the WRs attractors as the observed fields do. This is measured through the
calculation of the significance of the cluster partition as described in Straus et al. (2007) and
Strommen et al. (2019). The results for the PRIMAVERA coupled simulations are shown in
Figure 3.2.9.5: some models reach a significance somehow comparable to that found in
ERA-Interim, while many others are far below the observations.

Concluding, the coupled models show some difficulties in correctly reproducing the observed
Weather  Regimes  over  the  Euro-Atlantic  sector  during  winter.  Nevertheless,  for  some
models  and  depending  on  the  regime  considered,  the  simulated  WR  patterns  show  a
satisfactory  pattern  correlation  with  the  observed  ones.  More  systematic  differences are
seen in the WRs frequencies of occurrence.

3.2.10  Solid and liquid freshwater volumes and exports from the Arctic  [SMHI]

We have implemented python programs to calculate the Arctic liquid and solid freshwater
volumes, and their transports to/from the Arctic, for models participating in the EU H2020
PRIMAVERA project,  we have applied  this  tool  to  three different  coupled global  climate
models (GCMs): EC-Earth3.1, HadGEM3-GC2 and CMCC-CM2.  

The set  of  programs calculate the liquid and solid freshwater volume and the transports
across different straits that define the limit between the Arctic and the Atlantic or the Pacific
oceans.  They produce new NetCDF files that  can be used after  for  further analysis.  An
example  of  solid  freshwater  exports  output  can  be  found  in  the  figure  below  (Figure
3.2.10.1). This set of programs will be applied to all Stream-1 simulations.
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Figure  3.2.10.1: Ice  transport  towards  the  Arctic  across  different  straits  in  a)
GLORYS2V1 reanalysis, b) GLORYS2V4, c) EC-Earth, d) EC-Earth-HR, e) CMCC-
CM2 ORCA1 PI, f) CMCC-CM2 ORCA025 PI, g) CMCC-CM2 ORCA1 PD, h) CMCC-
CM2  ORCA025  PD,  i)  HadGEM3-GC2  N96,  j)  HadGEM3-GC2  N216  and  k)
HadGEM3-GM2 N512. The units are km3 year-1. Negative numbers mean ice export
from the Arctic. Total values (sum of ice transport across all straits) are shown in red.
CLORYS2V1  includes  1993–2009  period  and  GLORYS2V4  includes  the  period
1993–2015.
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3.2.11  The representation of extreme European precipitation  [UREAD]

Introduction:    We evaluated the impact of increased horizontal  atmospheric resolution
on extreme daily precipitation across the Stream-1 ensemble of atmosphere-and-land-
only  and  fully  coupled  simulations.  Here,  we  show  the  added  value  of  increased
atmospheric resolution for winter (DJF) precipitation over Europe and the North Atlantic.

Figure 3.2.11.1: Wintertime mean bias (model-observation) in  for lowest (2 � nd and 4th

rows) and highest (3rd and 5th rows) available resolution. Biases are computed versus
GPCP daily, gridded (1°) precipitation data, available for 1996–2013 (Huffman et al.,
2001).
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Methodology:    We employed generalised extreme value (GEV) analysis and applied the
parametric  block  maxima  method  globally.  At  each  model  grid  point,  globally,  1-day
precipitation maxima were computed for each canonical season. GEV distributions were
fitted  to  these  seasonal  precipitation  block  maxima  time  series,  described  by  the
location ), scale ) and shape ) parameters, which determine the change in return(� (� (�
value as a function of return period. Here, we focus on two quantities:  determines the �
vertical position of the GEV curve and thereby ‘typical’ return values and  determines �
the  slope of  the  GEV curve and thereby the year-to-year  variability  in  extremes.  We
show  results  for  highresSST-present  simulations  as  delivery  of  coupled  runs  from
PRIMAVERA partners  is  ongoing.  An  example  of  the  application  of  GEV analysis  to
global climate model integrations is given in Schiemann et al. (2018).

Figure 3.2.11.2: Multi-model wintertime mean difference in (a)  (high-resolution �
minus  low-resolution)  and  (b)  root-mean-square  error  (RMSE).  Positive �
(negative)  values  indicate  increased  (decreased)  or  RMSE  at  high- �  �
resolution. Large (small) stippling indicates that all  six (five out of six) models
agree  on  the  sign  of  change  with  resolution  increase.  RMSE  is  computed �
versus GPCP data.

Key  results:    Models  underestimate  over  land,  the  Mediterranean,  and  north-east �
North  Atlantic  (Figure  3.2.11.1).  Increasing  resolution  increases  across  the  mid- �
latitudes in all models (Figure 3.2.11.2a). Increased extremes are simulated over much
of  the  North  Atlantic,  particularly  the  storm track  region in  winter  (and  the equinoxal
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seasons  –  not shown).  Simulated  is  closer  to  observational  Global  Precipitation �
Climatology  Project  data  (Huffman  et  al.,  2001)  over  this  region  (Figure  3.2.11.3b).
However,  simulated  is  farther  from  observational  estimates,  indicating  that  typical �
return  values  are  better-simulated  in  high-resolution  forced  simulations.  Importantly,
increased  extreme  precipitation  is  coterminous  with  reduced  error  over  the  north-
eastern North Atlantic, Mediterranean and European orographic regions, exhibiting the
added value of high-resolution integrations across much of the Euro-Atlantic domain of
immediate interest to PRIMAVERA partners and stakeholders.

Figure 3.2.11.3: As Figure 3.2.11.2 but for .�

Forthcoming  research:   (i)  Assess  observational  uncertainty  over  European  land.  (ii)
Extend  analysis  to  remaining  coupled  simulations  upon  delivery.  (iii)  Link  GEV
evaluation  to  analyses  of  ETC activity  and  associated  precipitation  as  well  as  North
Atlantic eddy-driven jet variability (CMCC collaboration). (iv) Link evaluation of extremes
to post-tropical cyclone analyses (KNMI collaboration).
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3.2.12  Multi-algorithm analysis of tropical cyclones  [UKMO]

Regarding tropical cyclone tracking, the reader is kindly pointed also to Section 3.2.6.

It is well known that different algorithms used to track particular structures in models and
reanalyses (such as tropical and extra-tropical cyclones, polar lows, Medicanes etc.) have
different strengths and weaknesses. These may relate to both how well the required features
are  found  within  these  large  datasets,  as  well  as  the  efficiently  and  the  focus  of  the
algorithms  themselves.  Interpreting  the  output  from  such  algorithms,  and  drawing
conclusions from it (for example understanding model biases, or the impact of forcing, or
storm structure) may not be robust if the algorithm itself has weaknesses.

Hence using more than one tracking algorithm can help to address some of these issues.
There are several questions that arise:

1. does each algorithm find the same structures in a given model?

2. do results from different algorithms help us to better understand the models?

3. what are the strengths and weaknesses of the different algorithms?

In  this  work  we  use  TRACK  (Hodges  et  al.,  2017)  and  TempestExtremes  (Ullrich  and
Zarzycki,  2017;  Zarzycki and Ullrich, 2017) for tropical cyclones tracking. The respective
codes are available on JASMIN. We use a variety of input datasets, including reanalyses
and multi-member ensembles of model simulations at different resolutions. 

The basic differences between the algorithms are:

TRACK uses 850 hPa vorticity, filtered onto a common T63 spectral grid (regardless of the
native model resolution) to find promising features, and then uses the vertical gradient of
vorticity (850 to 250 hPa) to ensure a warm core, together with other filters.

TempestExtremes uses mean sea level pressure as the basic feature variable, and then the
difference in geopotential height between 250 and 500 hPa to check for a warm core. It then
stitches together individual points if they pass various criteria to make continuous tracks.

Here we focus on ensemble simulations using HadGEM3-GC31 on latitude-longitude grid
(85 levels) at different horizontal resolutions:

LM = N96 (130km mid-latitude), 192x144 points, 13 members

MM = N216 (60km), 432 x 324 points, 13 members

HM = N512 (25km), 1024 x 768 points, 5 members

We  use  years  1979–2014  with  the  HighResMIP highresSST-present  simulations  (using
HadISST2.2  ¼  degree  daily  SST  and  sea-ice  forcing,  MACv2-SP aerosol  (not  natural
aerosol  variability;  Haarsma  et  al.,  2016).  We  mainly  use  ACE  (Accumulated  Cyclone
Energy) as the metric for tropical cyclone activity, as it  is more robust than simple storm
frequency (Roberts et al., in prep.).
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Algorithm cost:  Proviso – it is not simple to exactly compare the cost of the algorithms due
to preprocessing (and currently re-using TRACK inputs to set up TempestExtremes inputs).
In addition there are known optimisations of TRACK in later versions of the code which is not
used here. However, of the main different processing costs for a 25km global lat-lon grid, for
1 year with 6 hourly data:

TRACK: 

Spatial filtering 5 pressure levels to T63 (run concurrently): >=4 hours

Tracking: 1 hour per hemisphere, serially = 2 hours

Total: ~6 hours per model year

TempestExtremes: Identify + stitch for both hemispheres: 8 minutes.

Figure 3.2.12.1: Mean tropical cyclone activity (frequency) in (top) Northern and Southern
Hemispheres and (bottom) each ocean basin over the period 1979–2014. The colours in
each bar show the proportion of the storms related to particular storm strengths. The initial
colour  indicates the model and corresponds to the weakest  storms. In the legend, T63
indictates  tracking  with  TRACK,  while  TE  indicates  tracking  performed  with  Tempest-
Extremes. The Cat xP shadings indicate how strong the tropical cyclone was (in terms of
minimum sea level pressure), from weak (Cat 1P) to strong (Cat 5P). Models: u-ai674 = LM
(130km); u-ai718 = MM (60km); u-ai685 = HM (25km). Observations are in black. 
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Results: We track all the ensemble members of each model resolution globally and assess
any differences in the results between the different algorithms.

Figure 3.2.12.1 shows the mean number of tropical cyclones in each basin, at the three
different model resolutions and for each algorithm. There are several differences to note:

1.  The lower  resolution  is  more sensitive  to the algorithm in  terms of  storm counts,  as
expected;

2.  The  number  of  storms  in  the  Southern  Hemisphere  is  considerably  reduced  using
TempestExtremes.

We then use the ensemble members to generate ensemble mean values at each year, and
compare the ensemble mean interannual variability with that observed. This should act to
average out the weather variability in each year (from the models), and allow us to assess
whether the skill of the models (as assessed by the correlation of interannual variability with
observations) is different between the two algorithms.

Figure  3.2.12.2: Number  of  ensemble  members  vs  ACE  interannual  variability
correlation  for  (top)  North  Atlantic  and  (middle)  NW Pacific  and  (bottom)  Eastern
Pacific.  The left  column uses TRACK and the right column uses TempestExtremes
algorithms.

PRIMAVERA (641727) Deliverable 1.2Page 37



Figure 3.2.12.2 shows the correlation of interannual ACE variability with observations for a
given ensemble size, for the North Atlantic (NA), North West Pacific (WP) and East Pacific
(EP) for the two algorithms (left column: TRACK, right column: TempestExtremes). We see
that for each basin, for the higher resolutions, the asymptote for the correlation looks similar
for the two algorithms, but is generally lower in TempestExtremes for the lower resolutions.
For the WP (and possibly the NA), there is a hint that the 25km model has higher skill, even
with fewer ensemble members than the other resolutions.

Summary:  We  have  implemented  two  different  tracking  algorithms  to  use  for  all  the
HighResMIP simulations, in order to have more confidence in our conclusions for tropical
cyclone analysis. This has illustrated that an apparent bias in all models for too many tropical
cyclones in the Southern Hemisphere may partly be due to the TRACK algorithm, as with
TempestExtremes there are far fewer storms found here.

We have also shown that  a reasonable number  of  ensemble members (perhaps five or
more)  is  needed for  a robust  assessment  of  model  interannual  variability  skill,  and with
enough members it is clear that the higher resolution models have more skill.

Further work:  In the future we can attempt to exactly match the tracks from the different
algorithms and hence attempt a deeper understanding of why one method finds particular
tracks but not another.

An overview of the results from the different methods may also have potential implications
for  understanding  variability  and  climate  change,  in  particular  if  the  coupled  model
simulations produce significantly different results with different algorithms.

3.2.13   Sea-ice - ocean heat transport (OHT) metric   [UCLouvain]

The  recent  observed  sea-ice  reduction  in  the  Barents  Sea  occurred  concurrently  to  an
increase  in  Atlantic  OHT due  to  both  strengthening  and  warming  of  the  oceanic  inflow
(Arthun et al., 2012). Other regions of the Arctic Ocean have also recently experienced an
increased influence from the Atlantic Water on sea-ice (Polyakov et al.,  2017). We have
developed the sea-ice – ocean heat transport (sea-ice – OHT) metric, which assesses the
relationship between Arctic sea-ice area/volume and poleward Atlantic OHT. We compute
the regression slope between detrended monthly mean sea-ice area and detrended annual
mean OHT for every year of a given period. Thus, this metric gives the amount of sea-ice
loss (or gain) per PW of OHT flowing to the Arctic. Sea-ice area and volume for the whole
Arctic Ocean and 7 specific Arctic seas (following Koenigk et al., 2016) are computed based
on sea-ice concentration, equivalent sea-ice thickness and grid-cell area. Annual mean OHT
is computed at  50N,  60N and 70N over  the whole latitudinal  band crossing the Atlantic
Ocean. A detailed description of this metric is provided in Docquier et al. (in review) using
outputs from 12 PRIMAVERA Stream-1 coupled hist-1950 model configurations.

The code of this metric is written in Python and is available upon request. It is planned in the
near future to clean the code and make it available to PRIMAVERA users through JASMIN
and PRIMAVERA svn repository. No observational reference is available at the moment due
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to the lack of OHT observations for a whole Atlantic latitudinal band. However, an ongoing
PRIMAVERA study focuses on the sea-ice – OHT relationship in specific Arctic seas where
OHT observations are available (e.g. Barents and Bering Seas) (Docquier et al., in prep.).

Figure 3.2.13.1: Regression slopes between detrended March Arctic sea-ice area and detrended
annual mean Atlantic OHT at 70N (computed over 1950–2014) for (a) the whole Arctic and (b—h) 7
specific Arctic regions (GIN stands for Greenland-Iceland-Norwegian). The X axis shows the 12 model
configurations used, with the first letter indicating the model (H: HadGEM3; E: ECMWF-IFS; A: AWI-
CM; C: CMCC-CM2; M: MPI-ESM). The black line on top of each bar indicates the standard deviation
of these slopes. Credit: Figure 14 of Docquier et al. (in review).

The sea-ice - OHT metric has been applied to PRIMAVERA Stream-1 coupled hist-1950
(and  control-1950)  simulations,  in  particular  12  different  model  configurations,  i.e.
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HadGEM3-LL,  HadGEM3-MM,  HadGEM3-HM,  ECMWF-LR,  ECMWF-MR,  ECMWF-HR,
AWI-LR,  AWI-HR,  CMCC-HR4,  CMCC-VHR4,  MPI-HR,  MPI-XR.  Figure  3.2.13.1  below
shows the  application  of  this  metric  over  all  model  configurations  and  the whole  Arctic
Ocean, as well as the 7 specific Arctic seas. In particular, Figure 3.2.13.1 shows that the
reduced sea-ice area in March is clearly correlated to the increased OHT at 70N for the total
Arctic  Ocean  (Figure  3.2.13.1.a;  except  CMCC-HR4  and  AWI-LR),  Barents/Kara  Seas
(Figure 3.2.13.1.f; except MPI-XR) and GIN Seas (Figure 3.2.13.1.h; except CMCC-HR4).
The higher the latitude to compute OHT, the stronger the anticorrelation between Arctic sea-
ice area and OHT. The specific Arctic regions that are more directly influenced by Atlantic
OHT are in the Atlantic sector of the Arctic Ocean, i.e. Barents/Kara Seas and GIN Seas,
which first receive the warm Atlantic water inflow. As HighResMIP is still ongoing at the time
of writing, more model outputs and analyses will be provided, which will give insights into our
understanding of the impact of resolution.

3.2.14   Local coupled feedbacks over Europe in summer   [CERFACS]

Different  metrics  of  local  coupled  feedbacks  have  been  computed.  Two  of  them are
analysed here: 

(i) The present-day interannual correlation in summer between evapotranspiration and
the sum of incoming solar and longwave radiation at surface (Mre).

(ii) The present-day interannual correlation in summer between surface temperature and
cloud cover (Mct). 

These metrics are calculated here on the 1979–2004 period and for land points only.

The first metric, Mre, aims to characterize the local coupling between the soil and the
atmosphere through evapotranspiration. Where the evapotranspiration is predominantly
limited  by  the  energy  available  at  surface  (e.g.  over  Scandinavia),  the  correlation  is
positive.  Where the evapotranspiration is  predominantly  limited by soil  moisture (e.g.
over southern Europe) the correlation is negative: namely, less energy at surface (more
clouds and more precipitation) is associated with a stronger evapotranspiration because
the latter, in this case, is controlled by soil moisture rather than the available radiative
energy.  Boé and Terray (2008,  2014) have shown that  previous climate models often
disagree  on  the  present-day  predominant  control  of  evapotranspiration  over  an
intermediate  region  of  Europe,  between  Scandinavia  and  southern  Europe,  with
important  potential  impacts  on  future  climate  changes,  through  the  modulation  of
evapotranspiration changes. 

The second metric, Mct, aims to assess the local cloud feedback. During summer over
most  of  Europe,  a  smaller  cloud  cover  is  generally  associated  with  higher  surface
temperature,  but  large  uncertainties  exist  regarding  the  magnitude  of  this  effect,
especially over western Europe, with a potential impact on simulated future temperature
changes (Boé and Terray, 2014).
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Figure 3.2.14.1: Values of the Mre and Mct metrics (no units) in summer averaged over
western Europe (40°N—60°N, -10°E—15°E) on the 1979–2004 period. LR (HR) PRIMA-
VERA forced atmospheric simulations (highresSST-present experiment) are shown with a
light (dark) blue dot.  A line connects the value of HR and LR simulations for a given
model. For CNRM-CM6, the ensemble mean is shown with the same colour code and the
individual members (8 HR and 10 LR members) are shown with light (for LR members)
and dark green (for  HR members)  dots.  The metrics for  a large ensemble of  CMIP5
models  (historical  simulations)  are  also  shown  with  red  dots.  Three  observational
estimates  are shown for  each  metric.  Three land  surface  analyses  are used for  M re:
ERAland (Balsamo et al., 2015), MERRAland (Reichle et al., 2011), and GLDAS (Rodell
et al., 2014). Regarding Mct, one estimate is based on cloud cover and temperature from
the ERA-Interim atmospheric reanalysis (Dee et al., 2011), another is based on CRU TS
(Harris  et  al.,  2014)  and  a  third  one  is  based  on  the  surface  temperature  dataset
HadCRUT4 (Morice et al., 2012) and the clouds satellite dataset ISCCP (Rossow et al.,
1999).

The inter-model spread for the two metrics is much smaller for the PRIMAVERA models than
for the CMIP5 coupled models, very likely because observed sea surface temperatures are
imposed as forcing in the highresSST-present PRIMAVERA simulations shown here (Figure
3.2.14.1).  The observational uncertainties are quite large for both metrics. The impact of
internal  variability  as  estimated  with  CNRM-CM6  is  large  for  Mct,  even  in  the  forced
atmospheric  framework  used here.  Given the impact  of  internal  variability  and the large
observational uncertainties, it is not possible to reject the consistency of PRIMAVERA HR
simulations with the observations regarding Mct for all the models. Some LR simulations are
likely not compatible with the observational estimates, but the lack of members, except for
CNRM-CM6, does not allow to reach a strong conclusion. Most PRIMAVERA simulations are
likely  not  consistent  with  observations  for  Mre,  with  generally  a  stronger  limitation  of
evapotranspiration by soil moisture.

PRIMAVERA (641727) Deliverable 1.2Page 41



Increasing model resolution may have a measurable impact using these metrics.  This is
visible for CNRM-CM6 for both metrics. For the other models, given the impact of internal
variability, it is difficult to draw a conclusion based on the single member used here. It is still
interesting  to note than in  all  the models,  Mct is  more negative  in  the  higher  resolution
simulations. This is also true for Mre in all the PRIMAVERA models except one. Note that
more negative present-day Mre and Mct tend to be associated with larger future summer
warming over Europe (Boé and Terray, 2014). It will be interesting to assess whether this
holds true for the PRIMAVERA future climate projections. 

The previous analysis shows the importance of taking into account the impact of internal
variability  and  the  observational  uncertainties  for  the  evaluation  of  the  models,  at  least
regarding the metrics used here, based on variables not necessarily well-observed, and, in
some cases not observed at all. Oceanic biases are likely responsible for the too positive
values of Mre and Mct seen in many CMIP5 models but not in the PRIMAVERA highresSST-
present simulations. Finally, the model resolution likely impacts the metrics analysed here. It
will be interesting to try to confirm whether this result is robust through the analysis of the
involved mechanisms. 

4. Lessons Learned

The  use  of  multiple  metrics,  and  multiple  algorithms  calculating  similar  metrics,  is
important  to  gain  different  insights  into  the  strengths  and  weaknesses  of  model
simulations.  Algorithms  also  have  their  own  weaknesses,  and  hence  it  can  be
dangerous to rely on just one when making conclusions about model fidelity.

5. Links Built

Regarding the implementation of metrics into the ESMValTool, priority will be given to those
metrics that are needed for evaluations related to WP10. Coordination with WP10 will be
fostered in the forthcoming General Assembly (GA4).
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